These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 23465267)

  • 1. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.
    Albanna MZ; Bou-Akl TH; Blowytsky O; Walters HL; Matthew HW
    J Mech Behav Biomed Mater; 2013 Apr; 20():217-26. PubMed ID: 23465267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and properties of chitosan/polypeptide bioconjugate composite.
    Wang J; Liu C; Wei J; Chi P; Lu X; Yin M
    Biomed Mater; 2007 Mar; 2(1):32-8. PubMed ID: 18458431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers.
    Albanna MZ; Bou-Akl TH; Walters HL; Matthew HW
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):171-80. PubMed ID: 22100092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospinning collagen/chitosan/poly(L-lactic acid-co-ε-caprolactone) to form a vascular graft: mechanical and biological characterization.
    Yin A; Zhang K; McClure MJ; Huang C; Wu J; Fang J; Mo X; Bowlin GL; Al-Deyab SS; El-Newehy M
    J Biomed Mater Res A; 2013 May; 101(5):1292-301. PubMed ID: 23065755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications.
    Tuzlakoglu K; Alves CM; Mano JF; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):811-9. PubMed ID: 15468275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs.
    Arrigoni C; Camozzi D; Imberti B; Mantero S; Remuzzi A
    Biomaterials; 2006 Feb; 27(4):623-30. PubMed ID: 16048730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering.
    Rami L; Malaise S; Delmond S; Fricain JC; Siadous R; Schlaubitz S; Laurichesse E; Amédée J; Montembault A; David L; Bordenave L
    J Biomed Mater Res A; 2014 Oct; 102(10):3666-76. PubMed ID: 24293114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering.
    Sarukawa J; Takahashi M; Abe M; Suzuki D; Tokura S; Furuike T; Tamura H
    J Biomater Sci Polym Ed; 2011; 22(4-6):717-32. PubMed ID: 20566054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering.
    Adekogbe I; Ghanem A
    Biomaterials; 2005 Dec; 26(35):7241-50. PubMed ID: 16011846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering.
    Rafat M; Li F; Fagerholm P; Lagali NS; Watsky MA; Munger R; Matsuura T; Griffith M
    Biomaterials; 2008 Oct; 29(29):3960-72. PubMed ID: 18639928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering.
    Kouser R; Vashist A; Zafaryab M; Rizvi MA; Ahmad S
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():168-179. PubMed ID: 29519426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning of Biosyn(®)-based tubular conduits: structural, morphological, and mechanical characterizations.
    Thomas V; Donahoe T; Nyairo E; Dean DR; Vohra YK
    Acta Biomater; 2011 May; 7(5):2070-9. PubMed ID: 21232639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of chitosan-polycaprolactone blends for tissue engineering applications.
    Sarasam A; Madihally SV
    Biomaterials; 2005 Sep; 26(27):5500-8. PubMed ID: 15860206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea.
    Tonsomboon K; Oyen ML
    J Mech Behav Biomed Mater; 2013 May; 21():185-94. PubMed ID: 23566770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel.
    Hu X; Zhou J; Zhang N; Tan H; Gao C
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):352-9. PubMed ID: 19627800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable and thermosensitive nanofibrous hydrogel for bone tissue engineering.
    Wasupalli GK; Verma D
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110343. PubMed ID: 31761212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility.
    Xu HH; Simon CG
    Biomaterials; 2005 Apr; 26(12):1337-48. PubMed ID: 15482821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible light crosslinkable chitosan hydrogels for tissue engineering.
    Hu J; Hou Y; Park H; Choi B; Hou S; Chung A; Lee M
    Acta Biomater; 2012 May; 8(5):1730-8. PubMed ID: 22330279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering.
    Subramanian A; Lin HY; Vu D; Larsen G
    Biomed Sci Instrum; 2004; 40():117-22. PubMed ID: 15133945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.