These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23465722)

  • 21. Transformation/dissolution examination of antimony and antimony compounds with speciation of the transformation/dissolution solutions.
    Skeaff JM; Beaudoin R; Wang R; Joyce B
    Integr Environ Assess Manag; 2013 Jan; 9(1):98-113. PubMed ID: 22791698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The presence and leachability of antimony in different wastes and waste handling facilities in Norway.
    Okkenhaug G; Almås ÅR; Morin N; Hale SE; Arp HP
    Environ Sci Process Impacts; 2015 Nov; 17(11):1880-91. PubMed ID: 26449571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic release from iron rich mineral processing waste: Influence of pH and redox potential.
    Al-Abed SR; Jegadeesan G; Purandare J; Allen D
    Chemosphere; 2007 Jan; 66(4):775-82. PubMed ID: 16949129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimonate adsorption onto Mg-Fe layered double hydroxides in aqueous solutions at different pH values: Coupling surface complexation modeling with solid-state analyses.
    Hudcová B; Erben M; Vítková M; Komárek M
    Chemosphere; 2019 Aug; 229():236-246. PubMed ID: 31078880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solubility of antimony and other elements in samples taken from shooting ranges.
    Johnson CA; Moench H; Wersin P; Kugler P; Wenger C
    J Environ Qual; 2005; 34(1):248-54. PubMed ID: 15647555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of test conditions on solubility controlled leaching predictions from air-pollution-control residues.
    Hyks J; Astrup T; Christensen TH
    Waste Manag Res; 2007 Oct; 25(5):457-66. PubMed ID: 17985671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Water Chemistry on Antimony Removal by Chemical Coagulation: Implications of ζ-Potential and Size of Precipitates.
    Inam MA; Khan R; Akram M; Khan S; Yeom IT
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alterations of municipal solid waste incineration residues in a landfill.
    Shimaoka T; Zhang R; Watanabe K
    Waste Manag; 2007; 27(10):1444-51. PubMed ID: 17656082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimony as a global dilemma: Geochemistry, mobility, fate and transport.
    Herath I; Vithanage M; Bundschuh J
    Environ Pollut; 2017 Apr; 223():545-559. PubMed ID: 28190688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical stabilization of air pollution control residues from municipal solid waste incineration.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    J Hazard Mater; 2010 Jul; 179(1-3):382-92. PubMed ID: 20359820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.
    Fruergaard T; Hyks J; Astrup T
    Sci Total Environ; 2010 Sep; 408(20):4672-80. PubMed ID: 20599249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid.
    Kuan YC; Lee IH; Chern JM
    J Hazard Mater; 2010 May; 177(1-3):881-6. PubMed ID: 20079970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal.
    Quina MJ; Santos RC; Bordado JC; Quinta-Ferreira RM
    J Hazard Mater; 2008 Apr; 152(2):853-69. PubMed ID: 17728059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a mineral waste resulting from the melting treatment of air pollution control residues.
    Trujillo-vazquez A; Metiver-pignon H; Tiruta-barna L; Piantone P
    Waste Manag; 2009 Feb; 29(2):530-8. PubMed ID: 18707859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation.
    Leuz AK; Hug SJ; Wehrli B; Johnson CA
    Environ Sci Technol; 2006 Apr; 40(8):2565-71. PubMed ID: 16683593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of temperature on iron leaching from bauxite residue by sulfuric acid.
    Liu ZR; Zeng K; Zhao W; Li Y
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):55-8. PubMed ID: 18949440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.
    Inanc B; Inoue Y; Yamada M; Ono Y; Nagamori M
    J Hazard Mater; 2007 Mar; 141(3):793-802. PubMed ID: 17030419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anthropogenic atmospheric emissions of antimony and its spatial distribution characteristics in China.
    Tian H; Zhao D; Cheng K; Lu L; He M; Hao J
    Environ Sci Technol; 2012 Apr; 46(7):3973-80. PubMed ID: 22397522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous speciation of inorganic selenium and antimony in water samples by electrothermal vaporization inductively coupled plasma mass spectrometry following selective cloud point extraction.
    Li Y; Hu B; He M; Xiang G
    Water Res; 2008 Feb; 42(4-5):1195-203. PubMed ID: 17904192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chloride leaching from air pollution control residues solidified using ground granulated blast furnace slag.
    Lampris C; Stegemann JA; Cheeseman CR
    Chemosphere; 2008 Nov; 73(9):1544-9. PubMed ID: 18805564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.