These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23465732)

  • 41. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.
    Xin G; Sun H; Scott SM; Yao T; Lu F; Shao D; Hu T; Wang G; Ran G; Lian J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15262-71. PubMed ID: 25111062
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.
    Foley BM; Hernández SC; Duda JC; Robinson JT; Walton SG; Hopkins PE
    Nano Lett; 2015 Aug; 15(8):4876-82. PubMed ID: 26125524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of vacancy defects on the interfacial thermal resistance of partially overlapped bilayer graphene.
    Wang BC; Cao Q; Shao W; Cui Z
    Phys Chem Chem Phys; 2022 Mar; 24(9):5546-5554. PubMed ID: 35174847
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal transport mechanism at a solid-liquid interface based on the heat flux detected at a subatomic spatial resolution.
    Fujiwara K; Shibahara M
    Phys Rev E; 2022 Mar; 105(3-1):034803. PubMed ID: 35428048
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermal Conductance of Copper-Graphene Interface: A Molecular Simulation.
    Zhu J; Huang S; Xie Z; Guo H; Yang H
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal conduction and rectification in few-layer graphene Y junctions.
    Zhang G; Zhang H
    Nanoscale; 2011 Nov; 3(11):4604-7. PubMed ID: 21987096
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Corrugated epitaxial graphene/SiC interfaces: photon excitation and probing.
    Tang X; Xu S; Wang X
    Nanoscale; 2014 Aug; 6(15):8822-30. PubMed ID: 24956035
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal transport in MoS2/Graphene hybrid nanosheets.
    Zhang Z; Xie Y; Peng Q; Chen Y
    Nanotechnology; 2015 Sep; 26(37):375402. PubMed ID: 26313739
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance.
    Diao J; Srivastava D; Menon M
    J Chem Phys; 2008 Apr; 128(16):164708. PubMed ID: 18447480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A molecular dynamics study on heat transfer characteristics at the interfaces of alkanethiolate self-assembled monolayer and organic solvent.
    Kikugawa G; Ohara T; Kawaguchi T; Torigoe E; Hagiwara Y; Matsumoto Y
    J Chem Phys; 2009 Feb; 130(7):074706. PubMed ID: 19239308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Graphene Nanopetal Outgrowths on Internal Thermal Interface Resistance in Composites.
    Kumar A; Ayyagari N; Fisher TS
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6678-84. PubMed ID: 26901700
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials.
    Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT
    ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics.
    Lin KH; Strachan A
    J Chem Phys; 2015 Jul; 143(3):034703. PubMed ID: 26203038
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable Thermal Energy Transport across Diamond Membranes and Diamond-Si Interfaces by Nanoscale Graphoepitaxy.
    Cheng Z; Bai T; Shi J; Feng T; Wang Y; Mecklenburg M; Li C; Hobart KD; Feygelson TI; Tadjer MJ; Pate BB; Foley BM; Yates L; Pantelides ST; Cola BA; Goorsky M; Graham S
    ACS Appl Mater Interfaces; 2019 May; 11(20):18517-18527. PubMed ID: 31042348
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.
    Ko YH; Lee JD; Yoon T; Lee CW; Kim TS
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5679-86. PubMed ID: 26856638
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graphene Layer Number-Dependent Heat Transport across Nickel/Graphene/Nickel Interfaces.
    Zhou J; Yang K; Yang B; Zhong B; Yao S; Ma Y; Song J; Fan T; Tang D; Zhu J; Liu Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35237-35245. PubMed ID: 35876687
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electronically transparent graphene barriers against unwanted doping of silicon.
    Wong CP; Koek TJ; Liu Y; Loh KP; Goh KE; Troadec C; Nijhuis CA
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20464-72. PubMed ID: 25329365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution.
    Wu X; Ni Y; Zhu J; Burrows ND; Murphy CJ; Dumitrica T; Wang X
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10581-9. PubMed ID: 26938771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.