These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 23465755)

  • 1. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity.
    Lovley DR; Nevin KP
    Curr Opin Biotechnol; 2013 Jun; 24(3):385-90. PubMed ID: 23465755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide.
    LaBelle EV; Marshall CW; May HD
    Acc Chem Res; 2020 Jan; 53(1):62-71. PubMed ID: 31809012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to Sustainably Feed a Microbe: Strategies for Biological Production of Carbon-Based Commodities with Renewable Electricity.
    Butler CS; Lovley DR
    Front Microbiol; 2016; 7():1879. PubMed ID: 27965629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds.
    Nevin KP; Woodard TL; Franks AE; Summers ZM; Lovley DR
    mBio; 2010 May; 1(2):. PubMed ID: 20714445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of fuels and chemicals from waste by microbiomes.
    Marshall CW; LaBelle EV; May HD
    Curr Opin Biotechnol; 2013 Jun; 24(3):391-7. PubMed ID: 23587964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.
    Hawkins AS; McTernan PM; Lian H; Kelly RM; Adams MW
    Curr Opin Biotechnol; 2013 Jun; 24(3):376-84. PubMed ID: 23510698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct biological conversion of electrical current into methane by electromethanogenesis.
    Cheng S; Xing D; Call DF; Logan BE
    Environ Sci Technol; 2009 May; 43(10):3953-8. PubMed ID: 19544913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bug juice: harvesting electricity with microorganisms.
    Lovley DR
    Nat Rev Microbiol; 2006 Jul; 4(7):497-508. PubMed ID: 16778836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the use of oxygenic photosynthesis for the sustainable production of commodity chemicals.
    Pérez AA; Chen Q; Hernández HP; Branco Dos Santos F; Hellingwerf KJ
    Physiol Plant; 2019 May; 166(1):413-427. PubMed ID: 30829400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode.
    Zhen G; Kobayashi T; Lu X; Xu K
    Bioresour Technol; 2015 Jun; 186():141-148. PubMed ID: 25812818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 recycling: a key strategy to introduce green energy in the chemical production chain.
    Perathoner S; Centi G
    ChemSusChem; 2014 May; 7(5):1274-82. PubMed ID: 24599714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioelectrical Methane Production with an Ammonium Oxidative Reaction under the No Organic Substance Condition.
    Dinh HTT; Kambara H; Harada Y; Matsushita S; Aoi Y; Kindaichi T; Ozaki N; Ohashi A
    Microbes Environ; 2021; 36(2):. PubMed ID: 34135211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).
    Strik DP; Terlouw H; Hamelers HV; Buisman CJ
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):659-68. PubMed ID: 18797867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonphotosynthetic Biological CO
    Gonzales JN; Matson MM; Atsumi S
    Biochemistry; 2019 Mar; 58(11):1470-1477. PubMed ID: 30395445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrochemical Power-to-Gas: State of the Art and Future Perspectives.
    Geppert F; Liu D; van Eerten-Jansen M; Weidner E; Buisman C; Ter Heijne A
    Trends Biotechnol; 2016 Nov; 34(11):879-894. PubMed ID: 27666730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial fuel cells: novel microbial physiologies and engineering approaches.
    Lovley DR
    Curr Opin Biotechnol; 2006 Jun; 17(3):327-32. PubMed ID: 16679010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaching full potential: bioelectrochemical systems for storing renewable energy in chemical bonds.
    Su L; Ajo-Franklin CM
    Curr Opin Biotechnol; 2019 Jun; 57():66-72. PubMed ID: 30849708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A shift in the current: new applications and concepts for microbe-electrode electron exchange.
    Lovley DR; Nevin KP
    Curr Opin Biotechnol; 2011 Jun; 22(3):441-8. PubMed ID: 21333524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.