BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23465913)

  • 1. Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites.
    de Souza CF; Lucyszyn N; Woehl MA; Riegel-Vidotti IC; Borsali R; Sierakowski MR
    Carbohydr Polym; 2013 Mar; 93(1):144-53. PubMed ID: 23465913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical and in vitro biocompatibility of films combining reconstituted bacterial cellulose with arabinogalactan and xyloglucan.
    Lucyszyn N; Ono L; Lubambo AF; Woehl MA; Sens CV; de Souza CF; Sierakowski MR
    Carbohydr Polym; 2016 Oct; 151():889-898. PubMed ID: 27474637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process.
    Gea S; Reynolds CT; Roohpour N; Wirjosentono B; Soykeabkaew N; Bilotti E; Peijs T
    Bioresour Technol; 2011 Oct; 102(19):9105-10. PubMed ID: 21835613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WAXS and 13C NMR study of Gluconoacetobacter xylinus cellulose in composites with tamarind xyloglucan.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Carbohydr Res; 2008 Feb; 343(2):221-9. PubMed ID: 18048015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films.
    Kochumalayil JJ; Zhou Q; Kasai W; Berglund LA
    Carbohydr Polym; 2013 Apr; 93(2):466-72. PubMed ID: 23499084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enthalpic studies of xyloglucan-cellulose interactions.
    Lopez M; Bizot H; Chambat G; Marais MF; Zykwinska A; Ralet MC; Driguez H; Buléon A
    Biomacromolecules; 2010 Jun; 11(6):1417-28. PubMed ID: 20433133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linked bacterial cellulose networks using glyoxalization.
    Quero F; Nogi M; Lee KY; Vanden Poel G; Bismarck A; Mantalaris A; Yano H; Eichhorn SJ
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):490-9. PubMed ID: 21186815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks.
    Tanpichai S; Quero F; Nogi M; Yano H; Young RJ; Lindström T; Sampson WW; Eichhorn SJ
    Biomacromolecules; 2012 May; 13(5):1340-9. PubMed ID: 22423896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Biomacromolecules; 2009 Nov; 10(11):2961-7. PubMed ID: 19817435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physico chemical properties of aminated tamarind xyloglucan.
    Simi CK; Abraham TE
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):513-20. PubMed ID: 20817420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation for and study on the property of medical bacterial cellulose].
    Li Z; Yan Z; Chen S; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):164-9. PubMed ID: 22404031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials.
    Li Y; Qing S; Zhou J; Yang G
    Carbohydr Polym; 2014 Mar; 103():496-501. PubMed ID: 24528759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction.
    Park YB; Lee CM; Kafle K; Park S; Cosgrove DJ; Kim SH
    Biomacromolecules; 2014 Jul; 15(7):2718-24. PubMed ID: 24846814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing adhesion between nanoscale cellulose fibres using AFM lateral force spectroscopy: The effect of hemicelluloses on hydrogen bonding.
    Dolan GK; Cartwright B; Bonilla MR; Gidley MJ; Stokes JR; Yakubov GE
    Carbohydr Polym; 2019 Mar; 208():97-107. PubMed ID: 30658836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers.
    Jean B; Heux L; Dubreuil F; Chambat G; Cousin F
    Langmuir; 2009 Apr; 25(7):3920-3. PubMed ID: 18986190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution properties of the xyloglucan polymer from Afzelia africana.
    Ren Y; Picout DR; Ellis PR; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2384-91. PubMed ID: 15530055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular structure and properties of high strength regenerated cellulose films.
    Liu S; Zhang L; Sun Y; Lin Y; Zhang X; Nishiyama Y
    Macromol Biosci; 2009 Jan; 9(1):29-35. PubMed ID: 18781557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influences of added polysaccharides on the properties of bacterial crystalline nanocellulose.
    Chi K; Catchmark JM
    Nanoscale; 2017 Oct; 9(39):15144-15158. PubMed ID: 28972619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.