These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Puangsin B; Yang Q; Saito T; Isogai A Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078 [TBL] [Abstract][Full Text] [Related]
4. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Shinoda R; Saito T; Okita Y; Isogai A Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. Shimizu M; Fukuzumi H; Saito T; Isogai A Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708 [TBL] [Abstract][Full Text] [Related]
6. Selective permeation of hydrogen gas using cellulose nanofibril film. Fukuzumi H; Fujisawa S; Saito T; Isogai A Biomacromolecules; 2013 May; 14(5):1705-9. PubMed ID: 23594396 [TBL] [Abstract][Full Text] [Related]
7. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723 [TBL] [Abstract][Full Text] [Related]
8. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320 [TBL] [Abstract][Full Text] [Related]
9. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Fujisawa S; Ikeuchi T; Takeuchi M; Saito T; Isogai A Biomacromolecules; 2012 Jul; 13(7):2188-94. PubMed ID: 22642863 [TBL] [Abstract][Full Text] [Related]
10. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers. Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815 [TBL] [Abstract][Full Text] [Related]
11. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Soni B; Hassan EB; Schilling MW; Mahmoud B Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625 [TBL] [Abstract][Full Text] [Related]
12. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Hiraoki R; Ono Y; Saito T; Isogai A Biomacromolecules; 2015 Feb; 16(2):675-81. PubMed ID: 25584418 [TBL] [Abstract][Full Text] [Related]
13. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains. Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905 [TBL] [Abstract][Full Text] [Related]
14. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films. Hakalahti M; Salminen A; Seppälä J; Tammelin T; Hänninen T Carbohydr Polym; 2015 Aug; 126():78-82. PubMed ID: 25933525 [TBL] [Abstract][Full Text] [Related]
15. Relationship of Distribution of Carboxy Groups to Molar Mass Distribution of TEMPO-Oxidized Algal, Cotton, and Wood Cellulose Nanofibrils. Ono Y; Fukui S; Funahashi R; Isogai A Biomacromolecules; 2019 Oct; 20(10):4026-4034. PubMed ID: 31525036 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Qi ZD; Saito T; Fan Y; Isogai A Biomacromolecules; 2012 Feb; 13(2):553-8. PubMed ID: 22251371 [TBL] [Abstract][Full Text] [Related]
17. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application. Pal N; Banerjee S; Roy P; Pal K Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109956. PubMed ID: 31499971 [TBL] [Abstract][Full Text] [Related]
18. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces. Shimizu M; Saito T; Fukuzumi H; Isogai A Biomacromolecules; 2014 Nov; 15(11):4320-5. PubMed ID: 25310181 [TBL] [Abstract][Full Text] [Related]
19. Self-standing films of octadecylaminated-TEMPO-oxidized cellulose nanofibrils with antifingerprint properties. Krathumkhet N; Ujihara M; Imae T Carbohydr Polym; 2021 Mar; 256():117536. PubMed ID: 33483052 [TBL] [Abstract][Full Text] [Related]
20. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO₂ systems in water at pH 4.8 or 6.8. Tanaka R; Saito T; Isogai A Int J Biol Macromol; 2012 Oct; 51(3):228-34. PubMed ID: 22617623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]