These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23466033)

  • 1. Interaction between local hydrodynamics and algal community in epilithic biofilm.
    Graba M; Sauvage S; Moulin FY; Urrea G; Sabater S; Sanchez-Pérez JM
    Water Res; 2013 May; 47(7):2153-63. PubMed ID: 23466033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms.
    Wang C; Miao L; Hou J; Wang P; Qian J; Dai S
    Water Sci Technol; 2014; 69(4):825-32. PubMed ID: 24569283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures.
    Paule A; Lauga B; Ten-Hage L; Morchain J; Duran R; Paul E; Rols JL
    Water Res; 2011 Nov; 45(18):6107-18. PubMed ID: 21962848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.
    Risse-Buhl U; Anlanger C; Kalla K; Neu TR; Noss C; Lorke A; Weitere M
    Water Res; 2017 Dec; 127():211-222. PubMed ID: 29049969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal and external mass transfer in biofilms grown at various flow velocities.
    Beyenal H; Lewandowski Z
    Biotechnol Prog; 2002; 18(1):55-61. PubMed ID: 11822900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of biofilm permeability on bio-clogging of porous media.
    Pintelon TR; Picioreanu C; Loosdrecht MC; Johns ML
    Biotechnol Bioeng; 2012 Apr; 109(4):1031-42. PubMed ID: 22095039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roughness effects of diatomaceous slime fouling on turbulent boundary layer hydrodynamics.
    Murphy EAK; Barros JM; Schultz MP; Flack KA; Steppe CN; Reidenbach MA
    Biofouling; 2018 Oct; 34(9):976-988. PubMed ID: 30602310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary layer hydrodynamics of patchy biofilms.
    Murphy EAK; Barros JM; Schultz MP; Flack KA; Steppe CN; Reidenbach MA
    Biofouling; 2022 Aug; 38(7):696-714. PubMed ID: 36062568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy.
    Wagner M; Manz B; Volke F; Neu TR; Horn H
    Biotechnol Bioeng; 2010 Sep; 107(1):172-81. PubMed ID: 20506514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Effects of Hydrodynamic Regimes on Microbial Communities within Fluvial Biofilms: Combining Deterministic and Stochastic Processes.
    Li Y; Wang C; Zhang W; Wang P; Niu L; Hou J; Wang J; Wang L
    Environ Sci Technol; 2015 Nov; 49(21):12869-78. PubMed ID: 26437120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abiotic autumnal organic matter deposition and grazing disturbance effects on epilithic biofilm succession.
    Lang JM; McEwan RW; Benbow ME
    FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 26038240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.
    Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC
    Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient.
    Dreszer C; Flemming HC; Zwijnenburg A; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Mar; 50():200-11. PubMed ID: 24374131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors Controlling Changes in Epilithic Algal Biomass in the Mountain Streams of Subtropical Taiwan.
    Kuo YM; Yu HL; Kuan WH; Kuo MH; Lin HJ
    PLoS One; 2016; 11(11):e0166604. PubMed ID: 27846322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms.
    Shen Y; Monroy GL; Derlon N; Janjaroen D; Huang C; Morgenroth E; Boppart SA; Ashbolt NJ; Liu WT; Nguyen TH
    Environ Sci Technol; 2015 Apr; 49(7):4274-82. PubMed ID: 25699403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cohesiveness and hydrodynamic properties of young drinking water biofilms.
    Abe Y; Skali-Lami S; Block JC; Francius G
    Water Res; 2012 Mar; 46(4):1155-66. PubMed ID: 22221338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic deformation and removal of Staphylococcus epidermidis biofilms treated with urea, chlorhexidine, iron chloride, or DispersinB.
    Brindle ER; Miller DA; Stewart PS
    Biotechnol Bioeng; 2011 Dec; 108(12):2968-77. PubMed ID: 21732324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of river biofilms on artificial substrates and their potential for biomonitoring water quality.
    Tien CJ; Wu WH; Chuang TL; Chen CS
    Chemosphere; 2009 Aug; 76(9):1288-95. PubMed ID: 19576617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.
    Carrel M; Morales VL; Beltran MA; Derlon N; Kaufmann R; Morgenroth E; Holzner M
    Water Res; 2018 May; 134():280-291. PubMed ID: 29433078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.