BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23466081)

  • 1. Life-stage-dependent sensitivity of the cyclopoid copepod Mesocyclops leuckarti to triphenyltin.
    Kulkarni D; Daniels B; Preuss TG
    Chemosphere; 2013 Aug; 92(9):1145-53. PubMed ID: 23466081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecological interactions affecting population-level responses to chemical stress in Mesocyclops leuckarti.
    Kulkarni D; Hommen U; Schäffer A; Preuss TG
    Chemosphere; 2014 Oct; 112():340-7. PubMed ID: 25048925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body size-dependent toxicokinetics and toxicodynamics could explain intra- and interspecies variability in sensitivity.
    Gergs A; Kulkarni D; Preuss TG
    Environ Pollut; 2015 Nov; 206():449-55. PubMed ID: 26275729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic effect of triphenyltin in the presence of nano zinc oxide to marine copepod Tigriopus japonicus.
    Yi X; Zhang K; Han G; Yu M; Chi T; Jing S; Li Z; Zhan J; Wu M
    Environ Pollut; 2018 Dec; 243(Pt A):687-692. PubMed ID: 30232019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicity of triphenyltin on the marine copepod Tigriopus japonicus at various biological organisations: from molecular to population-level effects.
    Yi AX; Han J; Lee JS; Leung KM
    Ecotoxicology; 2014 Sep; 23(7):1314-25. PubMed ID: 24981692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stage-dependent and sex-dependent sensitivity to water-soluble fractions of fresh and weathered oil in the marine copepod Calanus finmarchicus.
    Jager T; Altin D; Miljeteig C; Hansen BH
    Environ Toxicol Chem; 2016 Mar; 35(3):728-35. PubMed ID: 26923858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in lethal response between male and female calanoid copepods and life cycle traits to cadmium toxicity.
    Kadiene EU; Bialais C; Ouddane B; Hwang JS; Souissi S
    Ecotoxicology; 2017 Nov; 26(9):1227-1239. PubMed ID: 28990129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute and chronic toxicity of cadmium on the copepod Pseudodiaptomus annandalei: A life history traits approach.
    Kadiene EU; Meng PJ; Hwang JS; Souissi S
    Chemosphere; 2019 Oct; 233():396-404. PubMed ID: 31176903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of methyltestosterone, letrozole, triphenyltin and fenarimol on histology of reproductive organs of the copepod Acartia tonsa.
    Watermann BT; Albanis TA; Dagnac T; Gnass K; Ole Kusk K; Sakkas VA; Wollenberger L
    Chemosphere; 2013 Jul; 92(5):544-54. PubMed ID: 23664474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the toxicity of triphenyltin to different life stages of the marine medaka Oryzias melastigma through a series of life-cycle based experiments.
    Yi X; Leung KMY
    Mar Pollut Bull; 2017 Nov; 124(2):847-855. PubMed ID: 28242277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biological characteristic extrapolation of compound toxicity for different developmental stage species with toxicokinetic-toxicodynamic model.
    Gao Y; Xie Z; Feng M; Feng J; Zhu L
    Ecotoxicol Environ Saf; 2020 Oct; 203():111043. PubMed ID: 32888597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of triphenyltin acetate in microcosms simulating floodplain lakes. II. Comparison of species sensitivity distributions between laboratory and semi-field.
    Roessink I; Belgers JD; Crum SJ; van den Brink PJ; Brock TC
    Ecotoxicology; 2006 Jul; 15(5):411-24. PubMed ID: 16633738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper toxicity in the marine copepod Tigropus japonicus: low variability and high reproducibility of repeated acute and life-cycle tests.
    Kwok KW; Leung KM; Bao VW; Lee JS
    Mar Pollut Bull; 2008; 57(6-12):632-6. PubMed ID: 18474379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk assessment of the National Institute of Standards and Technology petroleum crude oil standard water accommodated fraction: further application of a copepod-based, full life-cycle bioassay.
    Bejarano AC; Chandler GT; He L; Cary TL; Ferry JL
    Environ Toxicol Chem; 2006 Jul; 25(7):1953-60. PubMed ID: 16833160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test procedures for measuring the (sub)chronic effects of chemicals on the freshwater cyclopoid Eucyclops serrulatus.
    Cifoni M; Galassi DMP; Faraloni C; Di Lorenzo T
    Chemosphere; 2017 Apr; 173():89-98. PubMed ID: 28107718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new protocol for ecotoxicological assessment of seawater using nauplii of Tisbe biminiensis (Copepoda:Harpacticoida).
    Lavorante BR; Oliveira DD; Costa BV; Souza-Santos LP
    Ecotoxicol Environ Saf; 2013 Sep; 95():52-9. PubMed ID: 23769123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Multi-walled Carbon Nanotubes on the Toxicity of Triphenyltin to the Marine Copepod Tigriopus japonicus.
    Yi X; Yu M; Li Z; Chi T; Jing S; Zhang K; Li W; Wu M
    Bull Environ Contam Toxicol; 2019 Jun; 102(6):789-794. PubMed ID: 30989279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis.
    Lyssimachou A; Navarro JC; Bachmann J; Porte C
    Environ Pollut; 2009 May; 157(5):1714-20. PubMed ID: 19162385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer.
    Li AJ; Leung PT; Bao VW; Yi AX; Leung KM
    Ecotoxicology; 2014 Oct; 23(8):1564-73. PubMed ID: 25098775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda.
    Sánchez-Bayo F
    Environ Pollut; 2006 Feb; 139(3):385-420. PubMed ID: 16111793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.