BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23466542)

  • 1. Antibacterial activities effectuated by co-continuous epoxy-based polymer materials.
    Kubo T; Yasuda K; Tominaga Y; Otsuka K; Hosoya K
    Colloids Surf B Biointerfaces; 2013 Jul; 107():53-8. PubMed ID: 23466542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial Activity of Epoxy Resins Mixed with Polyelectrolyte/Silver Nanoparticle Composite Filler.
    Mori Y; Shirokawa M; Sasaki S
    Biocontrol Sci; 2018; 23(3):129-132. PubMed ID: 30249962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity.
    Huang J; Koepsel RR; Murata H; Wu W; Lee SB; Kowalewski T; Russell AJ; Matyjaszewski K
    Langmuir; 2008 Jun; 24(13):6785-95. PubMed ID: 18517227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of guanidinylation on the properties of poly(2-aminoethylmethacrylate)-based antibacterial materials.
    Mattheis C; Wang H; Meister C; Agarwal S
    Macromol Biosci; 2013 Feb; 13(2):242-55. PubMed ID: 23255254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial cellulose fiber via RAFT surface graft polymerization.
    Roy D; Knapp JS; Guthrie JT; Perrier S
    Biomacromolecules; 2008 Jan; 9(1):91-9. PubMed ID: 18067264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.
    Wang H; Shi X; Yu D; Zhang J; Yang G; Cui Y; Sun K; Wang J; Yan H
    Langmuir; 2015 Dec; 31(50):13469-77. PubMed ID: 26606647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives.
    Ilker MF; Nüsslein K; Tew GN; Coughlin EB
    J Am Chem Soc; 2004 Dec; 126(48):15870-5. PubMed ID: 15571411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of poly(N-isopropylacrylamide)-grafted well-controlled 3D skeletal monolith based on E-51 epoxy resin for protein separation.
    Xin P; Shen Y; Qi L; Yang G; Chen Y
    Talanta; 2011 Aug; 85(2):1180-6. PubMed ID: 21726756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of alkyl chain length on the surface activity of antibacterial polymers derived from ROMP.
    Altay E; Yapaöz MA; Keskin B; Yucesan G; Eren T
    Colloids Surf B Biointerfaces; 2015 Mar; 127():73-8. PubMed ID: 25646740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and antibacterial properties of gelatin grafted with an epoxy silicone quaternary ammonium salt.
    Li J; Sha Z; Zhang W; Tao F; Yang P
    J Biomater Sci Polym Ed; 2016 Jul; 27(10):1017-28. PubMed ID: 27093873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes.
    Schiffman JD; Elimelech M
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):462-8. PubMed ID: 21261276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of epoxy-based monoliths for ion exchange chromatography of proteins.
    Dinh NP; Cam QM; Nguyen AM; Shchukarev A; Irgum K
    J Sep Sci; 2009 Aug; 32(15-16):2556-64. PubMed ID: 19670274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible antibacterial film deposited with polythiophene-porphyrin composite.
    Liu L; Chen J; Wang S
    Adv Healthc Mater; 2013 Dec; 2(12):1582-5. PubMed ID: 23703813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-dispersible and biodegradable polymer micelles with good antibacterial efficacy.
    Yuan W; Wei J; Lu H; Fan L; Du J
    Chem Commun (Camb); 2012 Jul; 48(54):6857-9. PubMed ID: 22669176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.
    Bakhshi H; Yeganeh H; Mehdipour-Ataei S
    J Biomed Mater Res A; 2013 Jun; 101(6):1599-611. PubMed ID: 23172859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surprising Antibacterial Activity and Selectivity of Hydrophilic Polyphosphoniums Featuring Sugar and Hydroxy Substituents.
    Cuthbert TJ; Hisey B; Harrison TD; Trant JF; Gillies ER; Ragogna PJ
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12707-12710. PubMed ID: 29996005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions.
    Xie D; Weng Y; Guo X; Zhao J; Gregory RL; Zheng C
    Dent Mater; 2011 May; 27(5):487-96. PubMed ID: 21388668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt.
    Zeng M; Xu J; Luo Q; Hou C; Qiao S; Fu S; Fan X; Liu J
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110383. PubMed ID: 31923992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials.
    Cao X; Tang M; Liu F; Nie Y; Zhao C
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):555-62. PubMed ID: 20810256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus.
    Ott S; Niessner R; Seidel M
    J Sep Sci; 2011 Aug; 34(16-17):2181-92. PubMed ID: 21735547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.