BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 23466605)

  • 1. Design, synthesis and biological evaluation of bakuchiol derivatives as multi-target agents for the treatment of Alzheimer's disease.
    Zhang XQ; Xiang YN; Qin T; Zou JP; Guo QW; Han ST; Zhang ZY; Liu WW; Ding G; Dong JQ; Shi DH
    Fitoterapia; 2024 Apr; 174():105867. PubMed ID: 38382891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cholinergic Selectivity of FDA-Approved and Metabolite Compounds Examined with Molecular-Docking-Based Virtual Screening.
    Gambardella MD; Wang Y; Pang J
    Molecules; 2024 May; 29(10):. PubMed ID: 38792196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, Biological Evaluation, and In Silico Studies of New Acetylcholinesterase Inhibitors Based on Quinoxaline Scaffold.
    Suwanhom P; Saetang J; Khongkow P; Nualnoi T; Tipmanee V; Lomlim L
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and molecular docking studies of some 4-phthalimidobenzenesulfonamide derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors.
    Soyer Z; Uysal S; Parlar S; Tarikogullari Dogan AH; Alptuzun V
    J Enzyme Inhib Med Chem; 2017 Dec; 32(1):13-19. PubMed ID: 27766908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual binding site and selective acetylcholinesterase inhibitors derived from integrated pharmacophore models and sequential virtual screening.
    Gupta S; Mohan CG
    Biomed Res Int; 2014; 2014():291214. PubMed ID: 25050335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Contrastive and Deep Learning Models to Identify Selective Butyrylcholinesterase Inhibitors.
    Ozalp MK; Vignaux PA; Puhl AC; Lane TR; Urbina F; Ekins S
    J Chem Inf Model; 2024 Apr; 64(8):3161-3172. PubMed ID: 38532612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Structure-Activity Relationship Modeling of Pea Protein-Derived Acetylcholinesterase and Butyrylcholinesterase Inhibitory Peptides.
    Asen ND; Udenigwe CC; Aluko RE
    J Agric Food Chem; 2023 Nov; 71(43):16323-16330. PubMed ID: 37856319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for Alzheimer's disease therapy.
    Choi BW; Ryu G; Park SH; Kim ES; Shin J; Roh SS; Shin HC; Lee BH
    Phytother Res; 2007 May; 21(5):423-6. PubMed ID: 17236179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: insights from molecular dynamics simulations.
    Fang L; Pan Y; Muzyka JL; Zhan CG
    J Phys Chem B; 2011 Jul; 115(27):8797-805. PubMed ID: 21682268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro and In Silico Kinetic Studies of Patented 1,7-diEthyl and 1,7-diMethyl Aminoalkanol Derivatives as New Inhibitors of Acetylcholinesterase.
    Grodner B; Napiórkowska M; Pisklak DM
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,3-substituted imidazolidine-2,4,5-triones: synthesis and inhibition of cholinergic enzymes.
    Pejchal V; Stepankova S; Padelkova Z; Imramovsky A; Jampilek J
    Molecules; 2011 Sep; 16(9):7565-82. PubMed ID: 21894089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural, computational and
    N Hegde V; J S S; B S C; Benedict Leoma M; N K L
    J Biomol Struct Dyn; 2024 Jun; 42(9):4619-4643. PubMed ID: 37418246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of integrated data mining methods to exploring natural product space for acetylcholinesterase inhibitors.
    Schuster D; Kern L; Hristozov DP; Terfloth L; Bienfait B; Laggner C; Kirchmair J; Grienke U; Wolber G; Langer T; Stuppner H; Gasteiger J; Rollinger JM
    Comb Chem High Throughput Screen; 2010 Jan; 13(1):54-66. PubMed ID: 20214575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral site acetylcholinesterase inhibitors targeting both inflammation and cholinergic dysfunction.
    Young S; Fabio K; Guillon C; Mohanta P; Halton TA; Heck DE; Flowers RA; Laskin JD; Heindel ND
    Bioorg Med Chem Lett; 2010 May; 20(9):2987-90. PubMed ID: 20347302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse Pharmacological Potential of Pyridazine Analogs against Various Diseases.
    Alsaiari AA; Almehmadi MM; Asif M
    Med Chem; 2024; 20(3):245-267. PubMed ID: 37711126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective Effects of 28-O-Caffeoyl Betulin (B-CA) on the Cerebral Cortex of Ischemic Rats Revealed by a NMR-Based Metabolomics Analysis.
    Liu X; Ruan Z; Shao XC; Feng HX; Wu L; Wang W; Wang HM; Mu HY; Zhang RJ; Zhao WM; Zhang HY; Zhang NX
    Neurochem Res; 2021 Mar; 46(3):686-698. PubMed ID: 33389470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of novel 2,6-disubstituted pyridazinone derivatives as acetylcholinesterase inhibitors.
    Xing W; Fu Y; Shi Z; Lu D; Zhang H; Hu Y
    Eur J Med Chem; 2013 May; 63():95-103. PubMed ID: 23466605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.
    Alpan AS; Parlar S; Carlino L; Tarikogullari AH; Alptüzün V; Güneş HS
    Bioorg Med Chem; 2013 Sep; 21(17):4928-37. PubMed ID: 23891231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/-nonsubstituted benzal)hydrazone derivatives and acetylcholinesterase and butyrylcholinesterase inhibitory activities in vitro.
    Utku S; Gökçe M; Orhan I; Sahin MF
    Arzneimittelforschung; 2011; 61(1):1-7. PubMed ID: 21355440
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.