These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23467080)

  • 1. Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: effect of degree of substitution.
    Layek B; Singh J
    Int J Pharm; 2013 Apr; 447(1-2):182-91. PubMed ID: 23467080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexanoic acid and polyethylene glycol double grafted amphiphilic chitosan for enhanced gene delivery: influence of hydrophobic and hydrophilic substitution degree.
    Layek B; Haldar MK; Sharma G; Lipp L; Mallik S; Singh J
    Mol Pharm; 2014 Mar; 11(3):982-94. PubMed ID: 24499512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-hexanoyl, N-octanoyl and N-decanoyl chitosans: Binding affinity, cell uptake, and transfection.
    Layek B; Singh J
    Carbohydr Polym; 2012 Jun; 89(2):403-10. PubMed ID: 24750737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers.
    Wang B; He C; Tang C; Yin C
    Biomaterials; 2011 Jul; 32(20):4630-8. PubMed ID: 21440295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid grafted chitosan for high performance gene delivery: comparison of amino acid hydrophobicity on vector and polyplex characteristics.
    Layek B; Singh J
    Biomacromolecules; 2013 Feb; 14(2):485-94. PubMed ID: 23301560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral gene delivery: design of polymeric carrier systems shielding toward intestinal enzymatic attack.
    Martien R; Loretz B; Schnürch AB
    Biopolymers; 2006 Nov; 83(4):327-36. PubMed ID: 16609969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery.
    Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J
    Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Chitosan nanoparticles as gene vector: effect of particle size on transfection efficiency].
    Yang XR; Zong L; Yuan XY
    Yao Xue Xue Bao; 2007 Jul; 42(7):774-9. PubMed ID: 17882964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles.
    Du YZ; Cai LL; Li J; Zhao MD; Chen FY; Yuan H; Hu FQ
    Int J Nanomedicine; 2011; 6():1559-68. PubMed ID: 21845046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation.
    Lavertu M; Méthot S; Tran-Khanh N; Buschmann MD
    Biomaterials; 2006 Sep; 27(27):4815-24. PubMed ID: 16725196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of crosslinking agents on the transfection efficiency, cellular and intracellular processing of DNA/polymer nanocomplexes.
    Zheng H; Tang C; Yin C
    Biomaterials; 2013 Apr; 34(13):3479-88. PubMed ID: 23398884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo gene transfer using pDNA/chitosan/chondroitin sulfate ternary complexes: influence of chondroitin sulfate on the stability of freeze-dried complexes and transgene expression in vivo.
    Hagiwara K; Kishimoto S; Ishihara M; Koyama Y; Mazda O; Sato T
    J Gene Med; 2013 Feb; 15(2):83-92. PubMed ID: 23307647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Feasibility of chitosan as gene therapy vehicle].
    Wan YY; Zhang X; He YJ; Jiang WQ
    Ai Zheng; 2005 Nov; 24(11):1408-11. PubMed ID: 16552973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and in vitro transfection efficiency of chitosan microspheres containing plasmid DNA:poly(L-lysine) complexes.
    Aral C; Akbuga J
    J Pharm Pharm Sci; 2003; 6(3):321-6. PubMed ID: 14738712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing.
    Zeng P; Xu Y; Zeng C; Ren H; Peng M
    Int J Pharm; 2011 Aug; 415(1-2):259-66. PubMed ID: 21645597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency.
    Zhao X; Yin L; Ding J; Tang C; Gu S; Yin C; Mao Y
    J Control Release; 2010 May; 144(1):46-54. PubMed ID: 20093155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles.
    Zhao X; Yu SB; Wu FL; Mao ZB; Yu CL
    J Control Release; 2006 May; 112(2):223-8. PubMed ID: 16556468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor-mediated gene delivery by folate-poly(ethylene glycol)-grafted-trimethyl chitosan in vitro.
    Zheng Y; Song X; He G; Cai Z; Zhou Y; Yu B; Xu J; Wei Y; Hou S
    J Drug Target; 2011 Sep; 19(8):647-56. PubMed ID: 20964597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and preliminary cellular evaluation of phosphonium chitosan derivatives as novel non-viral vector.
    Qian C; Xu X; Shen Y; Li Y; Guo S
    Carbohydr Polym; 2013 Sep; 97(2):676-83. PubMed ID: 23911500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency.
    Tang J; Chen JY; Liu J; Luo M; Wang YJ; Wei XW; Gao X; Wang BL; Liu YB; Yi T; Tong AP; Song XR; Xie YM; Zhao Y; Xiang M; Huang Y; Zheng Y
    Int J Pharm; 2012 Jul; 431(1-2):210-21. PubMed ID: 22561795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.