BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

712 related articles for article (PubMed ID: 23467090)

  • 1. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.
    Taruno A; Vingtdeux V; Ohmoto M; Ma Z; Dvoryanchikov G; Li A; Adrien L; Zhao H; Leung S; Abernethy M; Koppel J; Davies P; Civan MM; Chaudhari N; Matsumoto I; Hellekant G; Tordoff MG; Marambaud P; Foskett JK
    Nature; 2013 Mar; 495(7440):223-6. PubMed ID: 23467090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel.
    Taruno A; Matsumoto I; Ma Z; Marambaud P; Foskett JK
    Bioessays; 2013 Dec; 35(12):1111-8. PubMed ID: 24105910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CALHM3 Is Essential for Rapid Ion Channel-Mediated Purinergic Neurotransmission of GPCR-Mediated Tastes.
    Ma Z; Taruno A; Ohmoto M; Jyotaki M; Lim JC; Miyazaki H; Niisato N; Marunaka Y; Lee RJ; Hoff H; Payne R; Demuro A; Parker I; Mitchell CH; Henao-Mejia J; Tanis JE; Matsumoto I; Tordoff MG; Foskett JK
    Neuron; 2018 May; 98(3):547-561.e10. PubMed ID: 29681531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.
    Hellekant G; Schmolling J; Marambaud P; Rose-Hellekant TA
    Chem Senses; 2015 Jul; 40(6):373-9. PubMed ID: 25855639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.
    Ma Z; Saung WT; Foskett JK
    J Neurophysiol; 2017 May; 117(5):1865-1876. PubMed ID: 28202574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium homeostasis modulator (CALHM) ion channels.
    Ma Z; Tanis JE; Taruno A; Foskett JK
    Pflugers Arch; 2016 Mar; 468(3):395-403. PubMed ID: 26603282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of ATP and Purinergic Receptors in Taste Signaling.
    Kinnamon S; Finger T
    Handb Exp Pharmacol; 2022; 275():91-107. PubMed ID: 34435233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex.
    Romanov RA; Lasher RS; High B; Savidge LE; Lawson A; Rogachevskaja OA; Zhao H; Rogachevsky VV; Bystrova MF; Churbanov GD; Adameyko I; Harkany T; Yang R; Kidd GJ; Marambaud P; Kinnamon JC; Kolesnikov SS; Finger TE
    Sci Signal; 2018 May; 11(529):. PubMed ID: 29739879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal transduction and information processing in mammalian taste buds.
    Roper SD
    Pflugers Arch; 2007 Aug; 454(5):759-76. PubMed ID: 17468883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salty taste deficits in CALHM1 knockout mice.
    Tordoff MG; Ellis HT; Aleman TR; Downing A; Marambaud P; Foskett JK; Dana RM; McCaughey SA
    Chem Senses; 2014 Jul; 39(6):515-28. PubMed ID: 24846212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel.
    Taruno A; Sun H; Nakajo K; Murakami T; Ohsaki Y; Kido MA; Ono F; Marunaka Y
    J Physiol; 2017 Sep; 595(18):6121-6145. PubMed ID: 28734079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.
    Moyer BD; Hevezi P; Gao N; Lu M; Kalabat D; Soto H; Echeverri F; Laita B; Yeh SA; Zoller M; Zlotnik A
    PLoS One; 2009 Dec; 4(12):e7682. PubMed ID: 19997627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.
    Bigiani A
    Chem Senses; 2017 May; 42(4):343-359. PubMed ID: 28334404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli.
    Dutta Banik D; Benfey ED; Martin LE; Kay KE; Loney GC; Nelson AR; Ahart ZC; Kemp BT; Kemp BR; Torregrossa AM; Medler KF
    PLoS Genet; 2020 Aug; 16(8):e1008925. PubMed ID: 32790785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways.
    Zhang Y; Hoon MA; Chandrashekar J; Mueller KL; Cook B; Wu D; Zuker CS; Ryba NJ
    Cell; 2003 Feb; 112(3):293-301. PubMed ID: 12581520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-gated sodium channels in taste bud cells.
    Gao N; Lu M; Echeverri F; Laita B; Kalabat D; Williams ME; Hevezi P; Zlotnik A; Moyer BD
    BMC Neurosci; 2009 Mar; 10():20. PubMed ID: 19284629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Electrical Ca
    Nomura K; Nakanishi M; Ishidate F; Iwata K; Taruno A
    Neuron; 2020 Jun; 106(5):816-829.e6. PubMed ID: 32229307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine enhances sweet taste through A2B receptors in the taste bud.
    Dando R; Dvoryanchikov G; Pereira E; Chaudhari N; Roper SD
    J Neurosci; 2012 Jan; 32(1):322-30. PubMed ID: 22219293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taste information derived from T1R-expressing taste cells in mice.
    Yoshida R; Ninomiya Y
    Biochem J; 2016 Mar; 473(5):525-36. PubMed ID: 26912569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taste transduction and channel synapses in taste buds.
    Taruno A; Nomura K; Kusakizako T; Ma Z; Nureki O; Foskett JK
    Pflugers Arch; 2021 Jan; 473(1):3-13. PubMed ID: 32936320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.