BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 23467170)

  • 1. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition.
    Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA
    Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation.
    Zhou N; Dong L; Dixon S
    Hear Res; 2020 Apr; 389():107921. PubMed ID: 32097828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction in spread of excitation from current focusing at multiple cochlear locations in cochlear implant users.
    Padilla M; Landsberger DM
    Hear Res; 2016 Mar; 333():98-107. PubMed ID: 26778546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A directional remote-microphone for bimodal cochlear implant recipients.
    Vroegop JL; Homans NC; Goedegebure A; van der Schroeff MP
    Int J Audiol; 2018 Nov; 57(11):858-863. PubMed ID: 30261771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants.
    Nogueira W; Rode T; Büchner A
    J Acoust Soc Am; 2016 Feb; 139(2):728-39. PubMed ID: 26936556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of cochlear's SCAN and wireless microphones to improve speech understanding in noise with the Nucleus6® CP900 processor.
    De Ceulaer G; Pascoal D; Vanpoucke F; Govaerts PJ
    Int J Audiol; 2017 Nov; 56(11):837-843. PubMed ID: 28695749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system.
    Holden LK; Reeder RM; Firszt JB; Finley CC
    Int J Audiol; 2011 Apr; 50(4):255-69. PubMed ID: 21275500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.
    Goldsworthy RL
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25330772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility.
    Qazi OU; van Dijk B; Moonen M; Wouters J
    Hear Res; 2013 May; 299():79-87. PubMed ID: 23396271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A beamformer post-filter for cochlear implant noise reduction.
    Hersbach AA; Grayden DB; Fallon JB; McDermott HJ
    J Acoust Soc Am; 2013 Apr; 133(4):2412-20. PubMed ID: 23556606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.
    Oxenham AJ; Kreft HA
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy.
    Hazrati O; Sadjadi SO; Loizou PC; Hansen JH
    J Acoust Soc Am; 2013 Nov; 134(5):3759-65. PubMed ID: 24180786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Results using the OPAL strategy in Mandarin speaking cochlear implant recipients.
    Vandali AE; Dawson PW; Arora K
    Int J Audiol; 2017; 56(sup2):S74-S85. PubMed ID: 27329178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined spectral and temporal enhancement to improve cochlear-implant speech perception.
    Bhattacharya A; Vandali A; Zeng FG
    J Acoust Soc Am; 2011 Nov; 130(5):2951-60. PubMed ID: 22087923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2012 Aug; 132(2):994-1008. PubMed ID: 22894220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.