These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
919 related articles for article (PubMed ID: 23467397)
1. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Thekkae Padil VV; Černík M Int J Nanomedicine; 2013; 8():889-98. PubMed ID: 23467397 [TBL] [Abstract][Full Text] [Related]
2. Green Synthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanomaterial Derived from Qamar H; Rehman S; Chauhan DK; Tiwari AK; Upmanyu V Int J Nanomedicine; 2020; 15():2541-2553. PubMed ID: 32368039 [TBL] [Abstract][Full Text] [Related]
3. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Azam A; Ahmed AS; Oves M; Khan MS; Memic A Int J Nanomedicine; 2012; 7():3527-35. PubMed ID: 22848176 [TBL] [Abstract][Full Text] [Related]
4. Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli. Moniri Javadhesari S; Alipour S; Mohammadnejad S; Akbarpour MR Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110011. PubMed ID: 31546455 [TBL] [Abstract][Full Text] [Related]
5. An Eco-Friendly Synthesis Approach for Enhanced Photocatalytic and Antibacterial Properties of Copper Oxide Nanoparticles Using Khandelwal M; Choudhary S; Harish ; Kumawat A; Misra KP; Vyas Y; Singh B; Rathore DS; Soni K; Bagaria A; Khangarot RK Int J Nanomedicine; 2024; 19():4137-4162. PubMed ID: 38756417 [TBL] [Abstract][Full Text] [Related]
6. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180 [TBL] [Abstract][Full Text] [Related]
7. Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Thakur N; Anu ; Kumar K; Kumar A Dalton Trans; 2021 May; 50(18):6188-6203. PubMed ID: 33871499 [TBL] [Abstract][Full Text] [Related]
8. Effect of tungsten doping on the structural, morphological and bactericidal properties of nanostructured CuO. Raba-Páez AM; D Malafatti JO; Parra-Vargas CA; Paris EC; Rincón-Joya M PLoS One; 2020; 15(9):e0239868. PubMed ID: 32986775 [TBL] [Abstract][Full Text] [Related]
9. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Sathiyavimal S; F Durán-Lara E; Vasantharaj S; Saravanan M; Sabour A; Alshiekheid M; Lan Chi NT; Brindhadevi K; Pugazhendhi A Food Chem Toxicol; 2022 Oct; 168():113330. PubMed ID: 35926645 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of CuO-montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Sohrabnezhad Sh; Mehdipour Moghaddam MJ; Salavatiyan T Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():73-8. PubMed ID: 24531107 [TBL] [Abstract][Full Text] [Related]
11. Gum mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens. Nithiyavathi R; John Sundaram S; Theophil Anand G; Raj Kumar D; Dhayal Raj A; Al Farraj DA; Aljowaie RM; AbdelGawwad MR; Samson Y; Kaviyarasu K J Infect Public Health; 2021 Dec; 14(12):1893-1902. PubMed ID: 34782288 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of CuO nanoparticle using leaf extracts of Ocimum lamiifolium Hochst. ex Benth and Withana somnifera (L) Dunal for antibacterial activity. Mengesha SM; Abebe GM; Habtemariam TH Sci Rep; 2024 Oct; 14(1):23870. PubMed ID: 39396068 [TBL] [Abstract][Full Text] [Related]
13. Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga Hamouda RA; Alharthi MA; Alotaibi AS; Alenzi AM; Albalawi DA; Makharita RR Molecules; 2023 Aug; 28(17):. PubMed ID: 37687153 [TBL] [Abstract][Full Text] [Related]
14. Green Synthesis of Chromium Oxide Nanoparticles for Antibacterial, Antioxidant Anticancer, and Biocompatibility Activities. Khan SA; Shahid S; Hanif S; Almoallim HS; Alharbi SA; Sellami H Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419098 [TBL] [Abstract][Full Text] [Related]
15. Green synthesis of polyethylene glycol coated, ciprofloxacin loaded CuO nanoparticles and its antibacterial activity against Staphylococcus aureus. Ibne Shoukani H; Nisa S; Bibi Y; Ishfaq A; Ali A; Alharthi S; Kubra KT; Zia M Sci Rep; 2024 Sep; 14(1):21246. PubMed ID: 39261712 [TBL] [Abstract][Full Text] [Related]
17. Green and efficient biosynthesis of pectin-based copper nanoparticles and their antimicrobial activities. Li PJ; Liang JY; Su DL; Huang Y; Pan JJ; Peng MF; Li GY; Shan Y Bioprocess Biosyst Eng; 2020 Nov; 43(11):2017-2026. PubMed ID: 32572568 [TBL] [Abstract][Full Text] [Related]
18. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria. Rajivgandhi G; Maruthupandy M; Muneeswaran T; Ramachandran G; Manoharan N; Quero F; Anand M; Song JM Microb Pathog; 2019 Feb; 127():267-276. PubMed ID: 30550842 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, Characterization, and Antibacterial Activity of Mg-Doped CuO Nanoparticles. Adnan RM; Mezher M; Abdallah AM; Awad R; Khalil MI Molecules; 2022 Dec; 28(1):. PubMed ID: 36615296 [TBL] [Abstract][Full Text] [Related]
20. Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry. Javed R; Rais F; Kaleem M; Jamil B; Ahmad MA; Yu T; Qureshi SW; Ao Q Int J Biol Macromol; 2021 Jan; 167():1452-1467. PubMed ID: 33212106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]