These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23467649)

  • 1. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance.
    Boeye J; Travis JM; Stoks R; Bonte D
    Evol Appl; 2013 Feb; 6(2):353-64. PubMed ID: 23467649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conflict between adaptation and dispersal for maintaining biodiversity in changing environments.
    Thompson PL; Fronhofer EA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21061-21067. PubMed ID: 31570612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limits to the evolution of dispersal kernels under rapid fragmentation.
    Greenbaum G; Dener E; Giladi I
    J R Soc Interface; 2022 Mar; 19(188):20210696. PubMed ID: 35317653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change.
    Liang Y; Duveneck MJ; Gustafson EJ; Serra-Diaz JM; Thompson JR
    Glob Chang Biol; 2018 Jan; 24(1):e335-e351. PubMed ID: 29034990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving mutation rate advances the invasion speed of a sexual species.
    Cobben MMP; Mitesser O; Kubisch A
    BMC Evol Biol; 2017 Jun; 17(1):150. PubMed ID: 28651517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitating climate-change-induced range shifts across continental land-use barriers.
    Robillard CM; Coristine LE; Soares RN; Kerr JT
    Conserv Biol; 2015 Dec; 29(6):1586-95. PubMed ID: 26193759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can Aquatic Plants Keep Pace with Climate Change?
    Viana DS
    Front Plant Sci; 2017; 8():1906. PubMed ID: 29209338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The speed of range shifts in fragmented landscapes.
    Hodgson JA; Thomas CD; Dytham C; Travis JM; Cornell SJ
    PLoS One; 2012; 7(10):e47141. PubMed ID: 23082145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating the effects of long-distance dispersal and landscape heterogeneity on the eco-evolutionary outcomes of range expansion in an invasive riverine fish, Tench (Tinca tinca).
    Bernos TA; Day C; Hill J; Morissette O; Jeffries KM; Mandrak NE
    Mol Ecol; 2023 Jul; 32(13):3403-3418. PubMed ID: 37118974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pushing the pace of tree species migration.
    Lazarus ED; McGill BJ
    PLoS One; 2014; 9(8):e105380. PubMed ID: 25162663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of thermal performance can constrain dispersal during range shifting.
    Hillaert J; Boeye J; Stoks R; Bonte D
    J Biol Dyn; 2015; 9():317-35. PubMed ID: 26406927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change.
    Bourne EC; Bocedi G; Travis JM; Pakeman RJ; Brooker RW; Schiffers K
    Proc Biol Sci; 2014 Mar; 281(1778):20132795. PubMed ID: 24452022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham's skink, Egernia cunninghami.
    Ofori BY; Stow AJ; Baumgartner JB; Beaumont LJ
    PLoS One; 2017; 12(9):e0184193. PubMed ID: 28873398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate-driven range shifts reduce persistence of competitors in a perennial plant community.
    Usinowicz J; Levine JM
    Glob Chang Biol; 2021 May; 27(9):1890-1903. PubMed ID: 33432781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the effects of local adaptation and life history on the ability of plants to track climate shifts.
    Moran EV
    AoB Plants; 2020 Feb; 12(1):plaa008. PubMed ID: 32128105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Population Structure Determines Extinction Risk in Climate-Induced Range Shifts.
    Weiss-Lehman C; Shaw AK
    Am Nat; 2020 Jan; 195(1):31-42. PubMed ID: 31868544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population.
    Pavlacky DC; Possingham HP; Lowe AJ; Prentis PJ; Green DJ; Goldizen AW
    J Anim Ecol; 2012 Sep; 81(5):940-52. PubMed ID: 22489927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolved dispersal strategies at range margins.
    Dytham C
    Proc Biol Sci; 2009 Apr; 276(1661):1407-13. PubMed ID: 19324810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change and plant dispersal along corridors in fragmented landscapes of Mesoamerica.
    Imbach PA; Locatelli B; Molina LG; Ciais P; Leadley PW
    Ecol Evol; 2013 Sep; 3(9):2917-32. PubMed ID: 24101983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.
    Castillo JA; Epps CW; Jeffress MR; Ray C; Rodhouse TJ; Schwalm D
    Ecol Appl; 2016 Sep; 26(6):1660-1676. PubMed ID: 27755691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.