These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23467673)

  • 1. Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light.
    Zhang L; Hao J; Ye H; Yeo SP; Qiu M; Zouhdi S; Qiu CW
    Nanoscale; 2013 Apr; 5(8):3373-9. PubMed ID: 23467673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical cavity-assisted broadband optical transparency of a plasmonic metal film.
    Liu Z; Nie Y; Yuan W; Liu X; Huang S; Chen J; Gao H; Gu G; Liu G
    Nanotechnology; 2015 May; 26(18):185701. PubMed ID: 25873317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.
    Liu GQ; Hu Y; Liu ZQ; Chen YH; Cai ZJ; Zhang XN; Huang K
    Phys Chem Chem Phys; 2014 Mar; 16(9):4320-8. PubMed ID: 24452786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films.
    Kocer H; Butun S; Palacios E; Liu Z; Tongay S; Fu D; Wang K; Wu J; Aydin K
    Sci Rep; 2015 Aug; 5():13384. PubMed ID: 26294085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband perfect absorber based on one ultrathin layer of refractory metal.
    Deng H; Li Z; Stan L; Rosenmann D; Czaplewski D; Gao J; Yang X
    Opt Lett; 2015 Jun; 40(11):2592-5. PubMed ID: 26030565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-sided polarization-independent plasmonic absorber at near-infrared region.
    Dai S; Zhao D; Li Q; Qiu M
    Opt Express; 2013 Jun; 21(11):13125-33. PubMed ID: 23736566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-independent almost-perfect absorber controlled from narrowband to broadband.
    Chen J; Jin Y; Chen P; Shan Y; Xu J; Kong F; Shao J
    Opt Express; 2017 Jun; 25(12):13916-13922. PubMed ID: 28788834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination.
    Pu M; Feng Q; Wang M; Hu C; Huang C; Ma X; Zhao Z; Wang C; Luo X
    Opt Express; 2012 Jan; 20(3):2246-54. PubMed ID: 22330464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array.
    Zhang B; Zhao Y; Hao Q; Kiraly B; Khoo IC; Chen S; Huang TJ
    Opt Express; 2011 Aug; 19(16):15221-8. PubMed ID: 21934885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays.
    Cheng CW; Abbas MN; Chiu CW; Lai KT; Shih MH; Chang YC
    Opt Express; 2012 Apr; 20(9):10376-81. PubMed ID: 22535127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers.
    Corrigan TD; Park DH; Drew HD; Guo SH; Kolb PW; Herman WN; Phaneuf RJ
    Appl Opt; 2012 Mar; 51(8):1109-14. PubMed ID: 22410990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption.
    Lobet M; Lard M; Sarrazin M; Deparis O; Henrard L
    Opt Express; 2014 May; 22(10):12678-90. PubMed ID: 24921385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide-angle polarization-insensitive transparency of a continuous opaque metal film for near-infrared light.
    Song Z; Zhang B
    Opt Express; 2014 Mar; 22(6):6519-25. PubMed ID: 24664000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration.
    Alici KB; Turhan AB; Soukoulis CM; Ozbay E
    Opt Express; 2011 Jul; 19(15):14260-7. PubMed ID: 21934790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass.
    Paniagua-Domínguez R; Abujetas DR; Froufe-Pérez LS; Sáenz JJ; Sánchez-Gil JA
    Opt Express; 2013 Sep; 21(19):22076-89. PubMed ID: 24104100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.