These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 23468280)
1. Photocatalytic CO(2) reduction using non-titanium metal oxides and sulfides. Navalón S; Dhakshinamoorthy A; Alvaro M; Garcia H ChemSusChem; 2013 Apr; 6(4):562-77. PubMed ID: 23468280 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the photocatalytic activity of TiO2 co-doping of graphene-Fe3+ ions for formaldehyde removal. Low W; Boonamnuayvitaya V J Environ Manage; 2013 Sep; 127():142-9. PubMed ID: 23694821 [TBL] [Abstract][Full Text] [Related]
3. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Habisreutinger SN; Schmidt-Mende L; Stolarczyk JK Angew Chem Int Ed Engl; 2013 Jul; 52(29):7372-408. PubMed ID: 23765842 [TBL] [Abstract][Full Text] [Related]
4. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity. Li LH; Deng ZX; Xiao JX; Yang GW Nanotechnology; 2015 Jan; 26(25):255705. PubMed ID: 26040400 [TBL] [Abstract][Full Text] [Related]
5. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related]
6. All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel. Li P; Zhou Y; Li H; Xu Q; Meng X; Wang X; Xiao M; Zou Z Chem Commun (Camb); 2015 Jan; 51(4):800-3. PubMed ID: 25424013 [TBL] [Abstract][Full Text] [Related]
7. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Cheng H; Huang B; Liu Y; Wang Z; Qin X; Zhang X; Dai Y Chem Commun (Camb); 2012 Oct; 48(78):9729-31. PubMed ID: 22914674 [TBL] [Abstract][Full Text] [Related]
8. Ti(iv) doped WO₃ nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance. Feng C; Wang S; Geng B Nanoscale; 2011 Sep; 3(9):3695-9. PubMed ID: 21785781 [TBL] [Abstract][Full Text] [Related]
9. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites. Li W; Li D; Meng S; Chen W; Fu X; Shao Y Environ Sci Technol; 2011 Apr; 45(7):2987-93. PubMed ID: 21361322 [TBL] [Abstract][Full Text] [Related]
10. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations. Shaban YA; El Sayed MA; El Maradny AA; Al Farawati RKh; Al Zobidi MI Chemosphere; 2013 Apr; 91(3):307-13. PubMed ID: 23261126 [TBL] [Abstract][Full Text] [Related]
11. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Hsu HC; Shown I; Wei HY; Chang YC; Du HY; Lin YG; Tseng CA; Wang CH; Chen LC; Lin YC; Chen KH Nanoscale; 2013 Jan; 5(1):262-8. PubMed ID: 23160369 [TBL] [Abstract][Full Text] [Related]
13. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Ong WJ; Tan LL; Chai SP; Yong ST; Mohamed AR Nanoscale; 2014 Feb; 6(4):1946-2008. PubMed ID: 24384624 [TBL] [Abstract][Full Text] [Related]
14. Efficient photocatalytic reduction of aqueous Cr(VI) over flower-like SnIn4S8 microspheres under visible light illumination. Wang L; Li X; Teng W; Zhao Q; Shi Y; Yue R; Chen Y J Hazard Mater; 2013 Jan; 244-245():681-8. PubMed ID: 23177248 [TBL] [Abstract][Full Text] [Related]
15. Design and functionalization of photocatalytic systems within mesoporous silica. Qian X; Fuku K; Kuwahara Y; Kamegawa T; Mori K; Yamashita H ChemSusChem; 2014 Jun; 7(6):1528-36. PubMed ID: 24828540 [TBL] [Abstract][Full Text] [Related]
16. Activities of Combined TiO2 Semiconductor Nanocatalysts Under Solar Light on the Reduction of CO2. Liu H; Dao AQ; Fu C J Nanosci Nanotechnol; 2016 Apr; 16(4):3437-46. PubMed ID: 27451648 [TBL] [Abstract][Full Text] [Related]
17. A polymeric-semiconductor-metal-complex hybrid photocatalyst for visible-light CO(2) reduction. Maeda K; Sekizawa K; Ishitani O Chem Commun (Camb); 2013 Oct; 49(86):10127-9. PubMed ID: 24048317 [TBL] [Abstract][Full Text] [Related]
18. Graphitic-C(3)N(4)-hybridized TiO(2) nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity. Gu L; Wang J; Zou Z; Han X J Hazard Mater; 2014 Mar; 268():216-23. PubMed ID: 24509092 [TBL] [Abstract][Full Text] [Related]
19. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. Sun S; Wang W; Zeng S; Shang M; Zhang L J Hazard Mater; 2010 Jun; 178(1-3):427-33. PubMed ID: 20172648 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles. Chuang HY; Chen DH Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]