These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23468655)

  • 21. Random chromosome segregation in mouse intestinal epithelial stem cells.
    Legraverend C; Jay P
    Chromosome Res; 2013 May; 21(3):213-24. PubMed ID: 23681655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer.
    Gómez-López S; Lerner RG; Petritsch C
    Cell Mol Life Sci; 2014 Feb; 71(4):575-97. PubMed ID: 23771628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental Impact on Intestinal Stem Cell Functions in Mucosal Homeostasis and Tumorigenesis.
    Augenlicht LH
    J Cell Biochem; 2017 May; 118(5):943-952. PubMed ID: 27584938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulated spindle orientation buffers tissue growth in the epidermis.
    Morrow A; Underwood J; Seldin L; Hinnant T; Lechler T
    Elife; 2019 Oct; 8():. PubMed ID: 31577227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nutritional environment determines which and how intestinal stem cells contribute to homeostasis and tumorigenesis.
    Li W; Zimmerman SE; Peregrina K; Houston M; Mayoral J; Zhang J; Maqbool S; Zhang Z; Cai Y; Ye K; Augenlicht LH
    Carcinogenesis; 2019 Aug; 40(8):937-946. PubMed ID: 31169292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice.
    Sakamori R; Das S; Yu S; Feng S; Stypulkowski E; Guan Y; Douard V; Tang W; Ferraris RP; Harada A; Brakebusch C; Guo W; Gao N
    J Clin Invest; 2012 Mar; 122(3):1052-65. PubMed ID: 22354172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intestinal stem cells: no longer immortal but ever so clever...
    Edgar BA
    EMBO J; 2012 May; 31(11):2441-3. PubMed ID: 22580826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells.
    Kim TH; Escudero S; Shivdasani RA
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3932-7. PubMed ID: 22355124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome.
    Yu DH; Gadkari M; Zhou Q; Yu S; Gao N; Guan Y; Schady D; Roshan TN; Chen MH; Laritsky E; Ge Z; Wang H; Chen R; Westwater C; Bry L; Waterland RA; Moriarty C; Hwang C; Swennes AG; Moore SR; Shen L
    Genome Biol; 2015 Sep; 16():211. PubMed ID: 26420038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer.
    Spit M; Koo BK; Maurice MM
    Open Biol; 2018 Sep; 8(9):. PubMed ID: 30209039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of intestinal stem cell fate specification.
    Qi Z; Chen YG
    Sci China Life Sci; 2015 Jun; 58(6):570-8. PubMed ID: 25951932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells.
    Kabiri Z; Greicius G; Zaribafzadeh H; Hemmerich A; Counter CM; Virshup DM
    J Clin Invest; 2018 Aug; 128(9):3806-3812. PubMed ID: 30059017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel group of secretory cells regulates development of the immature intestinal stem cell niche through repression of the main signaling pathways driving proliferation.
    Li J; Dedloff MR; Stevens K; Maney L; Prochaska M; Hongay CF; Wallace KN
    Dev Biol; 2019 Dec; 456(1):47-62. PubMed ID: 31398318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near Equilibrium Calculus of Stem Cells in Application to the Airway Epithelium Lineage.
    Sun Z; Plikus MV; Komarova NL
    PLoS Comput Biol; 2016 Jul; 12(7):e1004990. PubMed ID: 27427948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insc:LGN tetramers promote asymmetric divisions of mammary stem cells.
    Culurgioni S; Mari S; Bonetti P; Gallini S; Bonetto G; Brennich M; Round A; Nicassio F; Mapelli M
    Nat Commun; 2018 Mar; 9(1):1025. PubMed ID: 29523789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice.
    Sampson LL; Davis AK; Grogg MW; Zheng Y
    FASEB J; 2016 Mar; 30(3):1263-75. PubMed ID: 26631481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification, visualization and clonal analysis of intestinal stem cells in fish.
    Aghaallaei N; Gruhl F; Schaefer CQ; Wernet T; Weinhardt V; Centanin L; Loosli F; Baumbach T; Wittbrodt J
    Development; 2016 Oct; 143(19):3470-3480. PubMed ID: 27578784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An enduring role for quiescent stem cells.
    Richmond CA; Shah MS; Carlone DL; Breault DT
    Dev Dyn; 2016 Jul; 245(7):718-26. PubMed ID: 27153394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reservoirs for repair? Damage-responsive stem cells and adult tissue regeneration in Drosophila.
    Schwartz S; Rhiner C
    Int J Dev Biol; 2018; 62(6-7-8):465-471. PubMed ID: 29938758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis.
    Yamashita YM; Yuan H; Cheng J; Hunt AJ
    Cold Spring Harb Perspect Biol; 2010 Jan; 2(1):a001313. PubMed ID: 20182603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.