These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23469030)

  • 1. Growth medium-dependent glycine incorporation into the peptidoglycan of Caulobacter crescentus.
    Takacs CN; Hocking J; Cabeen MT; Bui NK; Poggio S; Vollmer W; Jacobs-Wagner C
    PLoS One; 2013; 8(2):e57579. PubMed ID: 23469030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autolysis of Caulobacter crescentus grown in the presence of glycine.
    Markiewicz Z; Kwiatkowski Z
    Acta Microbiol Pol; 1985; 34(1):5-14. PubMed ID: 2579528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains.
    Poggio S; Takacs CN; Vollmer W; Jacobs-Wagner C
    Mol Microbiol; 2010 Jul; 77(1):74-89. PubMed ID: 20497503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media.
    Hottes AK; Meewan M; Yang D; Arana N; Romero P; McAdams HH; Stephens C
    J Bacteriol; 2004 Mar; 186(5):1448-61. PubMed ID: 14973021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Bacterial Cell Pole Stabilization in Caulobacter crescentus Sensitizes to Outer Membrane Stress and Peptidoglycan-Directed Antibiotics.
    Vallet SU; Hansen LH; Bistrup FC; Laursen SA; Chapalay JB; Chambon M; Turcatti G; Viollier PH; Kirkpatrick CL
    mBio; 2020 May; 11(3):. PubMed ID: 32371598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processivity of peptidoglycan synthesis provides a built-in mechanism for the robustness of straight-rod cell morphology.
    Sliusarenko O; Cabeen MT; Wolgemuth CW; Jacobs-Wagner C; Emonet T
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10086-91. PubMed ID: 20479277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus.
    Billini M; Biboy J; Kühn J; Vollmer W; Thanbichler M
    PLoS Genet; 2019 Feb; 15(2):e1007897. PubMed ID: 30707707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caulobacter crescentus Adapts to Phosphate Starvation by Synthesizing Anionic Glycoglycerolipids and a Novel Glycosphingolipid.
    Stankeviciute G; Guan Z; Goldfine H; Klein EA
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940701
    [No Abstract]   [Full Text] [Related]  

  • 9. DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter.
    Goley ED; Comolli LR; Fero KE; Downing KH; Shapiro L
    Mol Microbiol; 2010 Jul; 77(1):56-73. PubMed ID: 20497504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus.
    Strobel W; Möll A; Kiekebusch D; Klein KE; Thanbichler M
    J Bacteriol; 2014 Apr; 196(8):1627-39. PubMed ID: 24532768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus.
    Woldemeskel SA; Goley ED
    Trends Microbiol; 2017 Aug; 25(8):673-687. PubMed ID: 28359631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new factor stimulating peptidoglycan hydrolysis to separate daughter cells in Caulobacter crescentus.
    Collier J
    Mol Microbiol; 2010 Jul; 77(1):11-4. PubMed ID: 20497501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial cell curvature through mechanical control of cell growth.
    Cabeen MT; Charbon G; Vollmer W; Born P; Ausmees N; Weibel DB; Jacobs-Wagner C
    EMBO J; 2009 May; 28(9):1208-19. PubMed ID: 19279668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus.
    Herdman M; Isbilir B; von Kügelgen A; Schulze U; Wainman A; Bharat TAM
    Nat Commun; 2024 Apr; 15(1):3355. PubMed ID: 38637514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus.
    Möll A; Schlimpert S; Briegel A; Jensen GJ; Thanbichler M
    Mol Microbiol; 2010 Jul; 77(1):90-107. PubMed ID: 20497502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed Flagellar Ejection in Caulobacter crescentus Leaves PL-subcomplexes.
    Kaplan M; Wang Y; Chreifi G; Zhang L; Chang YW; Jensen GJ
    J Mol Biol; 2021 Jun; 433(13):167004. PubMed ID: 33891903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA.
    Wargachuk R; Marczynski GT
    J Bacteriol; 2015 Nov; 197(22):3521-32. PubMed ID: 26324449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Basis and Ecological Relevance of
    Heinrich K; Leslie DJ; Morlock M; Bertilsson S; Jonas K
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MreB drives de novo rod morphogenesis in Caulobacter crescentus via remodeling of the cell wall.
    Takacs CN; Poggio S; Charbon G; Pucheault M; Vollmer W; Jacobs-Wagner C
    J Bacteriol; 2010 Mar; 192(6):1671-84. PubMed ID: 20023035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus.
    Wortinger MA; Quardokus EM; Brun YV
    Mol Microbiol; 1998 Aug; 29(4):963-73. PubMed ID: 9767565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.