These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23469030)

  • 21. Cell wall growth during elongation and division: one ring to bind them?
    Scheffers DJ
    Mol Microbiol; 2007 May; 64(4):877-80. PubMed ID: 17501913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osmolality-dependent relocation of penicillin-binding protein PBP2 to the division site in Caulobacter crescentus.
    Hocking J; Priyadarshini R; Takacs CN; Costa T; Dye NA; Shapiro L; Vollmer W; Jacobs-Wagner C
    J Bacteriol; 2012 Jun; 194(12):3116-27. PubMed ID: 22505677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential modes of crosslinking establish spatially distinct regions of peptidoglycan in Caulobacter crescentus.
    Stankeviciute G; Miguel AV; Radkov A; Chou S; Huang KC; Klein EA
    Mol Microbiol; 2019 Apr; 111(4):995-1008. PubMed ID: 30614079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus.
    Zielińska A; Billini M; Möll A; Kremer K; Briegel A; Izquierdo Martinez A; Jensen GJ; Thanbichler M
    Mol Microbiol; 2017 Nov; 106(3):419-438. PubMed ID: 28833791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of medium pH by Caulobacter crescentus facilitates recovery from uranium-induced growth arrest.
    Park DM; Jiao Y
    Appl Environ Microbiol; 2014 Sep; 80(18):5680-8. PubMed ID: 25002429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of an essential gene responsible for D-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge.
    Veiga P; Piquet S; Maisons A; Furlan S; Courtin P; Chapot-Chartier MP; Kulakauskas S
    Mol Microbiol; 2006 Dec; 62(6):1713-24. PubMed ID: 17083466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Murein structure and lack of DD- and LD-carboxypeptidase activities in Caulobacter crescentus.
    Markiewicz Z; Glauner B; Schwarz U
    J Bacteriol; 1983 Nov; 156(2):649-55. PubMed ID: 6630150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amidase activity is essential for medial localization of AmiC in Caulobacter crescentus.
    Dubey A; Priyadarshini R
    Curr Genet; 2018 Jun; 64(3):661-675. PubMed ID: 29167986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic control of α-ketoglutarate.
    Irnov I; Wang Z; Jannetty ND; Bustamante JA; Rhee KY; Jacobs-Wagner C
    PLoS Genet; 2017 Aug; 13(8):e1006978. PubMed ID: 28827812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD.
    White CL; Kitich A; Gober JW
    Mol Microbiol; 2010 May; 76(3):616-33. PubMed ID: 20233306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly of the Caulobacter cell division machine.
    Goley ED; Yeh YC; Hong SH; Fero MJ; Abeliuk E; McAdams HH; Shapiro L
    Mol Microbiol; 2011 Jun; 80(6):1680-98. PubMed ID: 21542856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus.
    Aaron M; Charbon G; Lam H; Schwarz H; Vollmer W; Jacobs-Wagner C
    Mol Microbiol; 2007 May; 64(4):938-52. PubMed ID: 17501919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.
    Yakhnina AA; Gitai Z
    J Bacteriol; 2013 Oct; 195(19):4527-35. PubMed ID: 23935048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a Helical Morphological Mutant of Caulobacter crescentus.
    Markiewicz Z; Dziechciarz K; Kwiatkowski Z
    Acta Microbiol Pol; 1986; 35(1-2):5-13. PubMed ID: 21542389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus.
    Modrak SK; Melin ME; Bowers LM
    J Microbiol; 2018 Sep; 56(9):648-655. PubMed ID: 30054816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of YfiH (PgeF) as a factor contributing to the maintenance of bacterial peptidoglycan composition.
    Parveen S; Reddy M
    Mol Microbiol; 2017 Sep; 105(5):705-720. PubMed ID: 28612943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Caulobacter crescentus response to low temperature and identification of genes involved in freezing resistance.
    Mazzon RR; Lang EA; Braz VS; Marques MV
    FEMS Microbiol Lett; 2008 Nov; 288(2):178-85. PubMed ID: 18801049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular gluco-oligosaccharide degradation by Caulobacter crescentus.
    Presley GN; Payea MJ; Hurst LR; Egan AE; Martin BS; Periyannan GR
    Microbiology (Reading); 2014 Mar; 160(Pt 3):635-645. PubMed ID: 24421404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The B12 receptor BtuB alters the membrane integrity of Caulobacter crescentus.
    Menikpurage IP; Barraza D; Meléndez AB; Strebe S; Mera PE
    Microbiology (Reading); 2019 Mar; 165(3):311-323. PubMed ID: 30628887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of surface adhesion in Caulobacter crescentus.
    Bodenmiller D; Toh E; Brun YV
    J Bacteriol; 2004 Mar; 186(5):1438-47. PubMed ID: 14973013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.