These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23469351)

  • 1. Genome Sequence of Naphthalene-Degrading Soil Bacterium Pseudomonas putida CSV86.
    Phale PS; Paliwal V; Raju SC; Modak A; Purohit HJ
    Genome Announc; 2013 Jan; 1(1):. PubMed ID: 23469351
    [No Abstract]   [Full Text] [Related]  

  • 2. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unique global metabolic trait of
    Dhamale T; Saha BK; Papade SE; Singh S; Phale PS
    Microbiology (Reading); 2022 Aug; 168(8):. PubMed ID: 35925665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 5. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.
    Karishma M; Trivedi VD; Choudhary A; Mhatre A; Kambli P; Desai J; Phale PS
    FEMS Microbiol Lett; 2015 Oct; 362(20):. PubMed ID: 26316546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86.
    Basu A; Phale PS
    FEMS Microbiol Lett; 2006 Jun; 259(2):311-6. PubMed ID: 16734795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86.
    Basu A; Apte SK; Phale PS
    Appl Environ Microbiol; 2006 Mar; 72(3):2226-30. PubMed ID: 16517677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-physiological portrait of a novel Pseudomonas sp. CSV86: an ideal host/candidate for metabolic engineering and bioremediation.
    Phale PS; Mohapatra B; Malhotra H; Shah BA
    Environ Microbiol; 2022 Jun; 24(6):2797-2816. PubMed ID: 34347343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of
    Malhotra H; Dhamale T; Kaur S; Kasarlawar ST; Phale PS
    Microbiol Spectr; 2024 Jun; ():e0028424. PubMed ID: 38869268
    [No Abstract]   [Full Text] [Related]  

  • 10. Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation.
    Paliwal V; Raju SC; Modak A; Phale PS; Purohit HJ
    PLoS One; 2014; 9(1):e84000. PubMed ID: 24475028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugative transfer of preferential utilization of aromatic compounds from Pseudomonas putida CSV86.
    Basu A; Phale PS
    Biodegradation; 2008 Feb; 19(1):83-92. PubMed ID: 17487554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life Within a Contaminated Niche: Comparative Genomic Analyses of an Integrative Conjugative Element ICE
    Mohapatra B; Malhotra H; Phale PS
    Front Microbiol; 2022; 13():928848. PubMed ID: 35875527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA.
    Park W; Padmanabhan P; Padmanabhan S; Zylstra GJ; Madsen EL
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2319-2329. PubMed ID: 12177326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Draft Genome Sequence of the Polychlorinated Biphenyl-Degrading Bacterium Pseudomonas putida KF703 (NBRC 110666) Isolated from Biphenyl-Contaminated Soil.
    Suenaga H; Yamazoe A; Hosoyama A; Kimura N; Hirose J; Watanabe T; Fujihara H; Futagami T; Goto M; Furukawa K
    Genome Announc; 2015 Mar; 3(2):. PubMed ID: 25792060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture.
    Nigam A; Phale PS; Wangikar PP
    Bioresour Technol; 2012 Jun; 114():484-91. PubMed ID: 22494573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Genome Sequence of a Plant-Derived Phenylpropanoid-Degrading Bacterium, Pseudomonas putida JYR-1.
    Han Y; Tian J; Li Y; Hur HG; Han D
    Microbiol Resour Announc; 2020 Jan; 9(1):. PubMed ID: 31896631
    [No Abstract]   [Full Text] [Related]  

  • 18. Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6.
    Li S; Zhao H; Li Y; Niu S; Cai B
    J Bacteriol; 2012 Sep; 194(18):5154-5. PubMed ID: 22933774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential utilization of substrates by Pseudomonas putida CSV86: signatures of intermediate metabolites and online measurements.
    Basu A; Das D; Bapat P; Wangikar PP; Phale PS
    Microbiol Res; 2009; 164(4):429-37. PubMed ID: 17467253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86.
    Basu A; Shrivastava R; Basu B; Apte SK; Phale PS
    J Bacteriol; 2007 Nov; 189(21):7556-62. PubMed ID: 17827293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.