BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23469544)

  • 1. [Synthesis of strontium-containing porous hydroxyaptite ceramics and study of its biological properties].
    Zou W; Ran X; Liang J; Chen H; Luo J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1131-7. PubMed ID: 23469544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics.
    Xue W; Moore JL; Hosick HL; Bose S; Bandyopadhyay A; Lu WW; Cheung KM; Luk KD
    J Biomed Mater Res A; 2006 Dec; 79(4):804-14. PubMed ID: 16886220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Weibull characteristics of hydroxyapatite and strontium doped hydroxyapatite.
    Yatongchai C; Wren AW; Curran DJ; Hornez JC; Mark R T
    J Mech Behav Biomed Mater; 2013 May; 21():95-108. PubMed ID: 23524073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early osseointegration of a strontium containing glass ceramic in a rabbit model.
    Sabareeswaran A; Basu B; Shenoy SJ; Jaffer Z; Saha N; Stamboulis A
    Biomaterials; 2013 Dec; 34(37):9278-86. PubMed ID: 24050873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties.
    Wu C; Ramaswamy Y; Kwik D; Zreiqat H
    Biomaterials; 2007 Jul; 28(21):3171-81. PubMed ID: 17445881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
    Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS
    J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics.
    Draenert M; Draenert A; Draenert K
    Microsc Res Tech; 2013 Apr; 76(4):370-80. PubMed ID: 23390042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of sections of implanted macroporous calcium phosphate bone substitutes by proton-induced X-emission method and energy-dispersive spectrometry.
    Frayssinet P; Braye F; Weber G
    Scanning; 1997 Jun; 19(4):253-7. PubMed ID: 9195748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants.
    Porter AE; Buckland T; Hing K; Best SM; Bonfield W
    J Biomed Mater Res A; 2006 Jul; 78(1):25-33. PubMed ID: 16596583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods.
    Yuan H; van Blitterswijk CA; de Groot K; de Bruijn JD
    J Biomed Mater Res A; 2006 Jul; 78(1):139-47. PubMed ID: 16619253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: responses to oxidative stress in ovariectomised rats.
    Jebahi S; Oudadesse H; Jardak N; Khayat I; Keskes H; Khabir A; Rebai T; El Feki H; El Feki A
    Ann Pharm Fr; 2013 Jul; 71(4):234-42. PubMed ID: 23835021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A study of bone-like apatite formation on calcium phosphate ceramics in different kinds of animals in vivo].
    Duan Y; Wu Y; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):22-5. PubMed ID: 12744154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a synthetic bone scaffold using porous hydroxyapatite for bone repair.
    Mustaffa R; Besar I; Andanastuti M
    Med J Malaysia; 2008 Jul; 63 Suppl A():95-6. PubMed ID: 19025001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone.
    Nimb L; Jensen JS; Gotfredsen K
    J Biomed Mater Res; 1995 Dec; 29(12):1477-82. PubMed ID: 8600137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold.
    Han Y; Zhou J; Zhang L; Xu K
    Nanotechnology; 2011 Jul; 22(27):275603. PubMed ID: 21597161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty.
    Ni GX; Chiu KY; Lu WW; Wang Y; Zhang YG; Hao LB; Li ZY; Lam WM; Lu SB; Luk KD
    Biomaterials; 2006 Aug; 27(24):4348-55. PubMed ID: 16647752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.