These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23469853)

  • 1. Neurorestorative effect of urinary bladder matrix-mediated neural stem cell transplantation following traumatic brain injury in rats.
    Wang JY; Liou A; Ren ZH; Zhang L; Brown BN; Cui XT; Badylak SF; Cai YN; Guan YQ; Leak RK; Chen J; Ji X; Chen L
    CNS Neurol Disord Drug Targets; 2013 May; 12(3):413-425. PubMed ID: 23469853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of an inductive hydrogel composed of urinary bladder matrix upon functional recovery following traumatic brain injury.
    Zhang L; Zhang F; Weng Z; Brown BN; Yan H; Ma XM; Vosler PS; Badylak SF; Dixon CE; Cui XT; Chen J
    Tissue Eng Part A; 2013 Sep; 19(17-18):1909-18. PubMed ID: 23596981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury.
    Haus DL; López-Velázquez L; Gold EM; Cunningham KM; Perez H; Anderson AJ; Cummings BJ
    Exp Neurol; 2016 Jul; 281():1-16. PubMed ID: 27079998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Human ES-Derived Neural Stem Cell Transplantation and Kindling in a Rat Model of Traumatic Brain Injury.
    Beretta S; Cunningham KM; Haus DL; Gold EM; Perez H; López-Velázquez L; Cummings BJ
    Cell Transplant; 2017 Jul; 26(7):1247-1261. PubMed ID: 28933218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amelioration of Penetrating Ballistic-Like Brain Injury Induced Cognitive Deficits after Neuronal Differentiation of Transplanted Human Neural Stem Cells.
    Spurlock MS; Ahmed AI; Rivera KN; Yokobori S; Lee SW; Sam PN; Shear DA; Hefferan MP; Hazel TG; Johe KK; Gajavelli S; Tortella FC; Bullock RM
    J Neurotrauma; 2017 Jun; 34(11):1981-1995. PubMed ID: 28249550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats.
    Tajiri N; Acosta SA; Shahaduzzaman M; Ishikawa H; Shinozuka K; Pabon M; Hernandez-Ontiveros D; Kim DW; Metcalf C; Staples M; Dailey T; Vasconcellos J; Franyuti G; Gould L; Patel N; Cooper D; Kaneko Y; Borlongan CV; Bickford PC
    J Neurosci; 2014 Jan; 34(1):313-26. PubMed ID: 24381292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprotective effect of Da Chuanxiong Formula against cognitive and motor deficits in a rat controlled cortical impact model of traumatic brain injury.
    Liu ZK; Ng CF; Shiu HT; Wong HL; Chin WC; Zhang JF; Lam PK; Poon WS; Lau CB; Leung PC; Ko CH
    J Ethnopharmacol; 2018 May; 217():11-22. PubMed ID: 29425850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury.
    Ghazale H; Ramadan N; Mantash S; Zibara K; El-Sitt S; Darwish H; Chamaa F; Boustany RM; Mondello S; Abou-Kheir W; Soueid J; Kobeissy F
    Behav Brain Res; 2018 Mar; 340():1-13. PubMed ID: 29126932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of bioactive matrices in regenerative therapies for traumatic brain injury.
    Tan HX; Borgo MPD; Aguilar MI; Forsythe JS; Taylor JM; Crack PJ
    Acta Biomater; 2020 Jan; 102():1-12. PubMed ID: 31751809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury.
    Blaya MO; Tsoulfas P; Bramlett HM; Dietrich WD
    Exp Neurol; 2015 Feb; 264():67-81. PubMed ID: 25483396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of working memory and spatial acquisition deficits after a delayed and chronic bromocriptine treatment regimen in rats subjected to traumatic brain injury by controlled cortical impact.
    Kline AE; Massucci JL; Marion DW; Dixon CE
    J Neurotrauma; 2002 Apr; 19(4):415-25. PubMed ID: 11990348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of chitosan porous scaffolds combined with bone marrow mesenchymal stem cells in repair of neurological deficit after traumatic brain injury in rats].
    Tan K; Wang X; Zhang J; Zhuang Z; Dong T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):745-752. PubMed ID: 29905055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study.
    Aligholi H; Rezayat SM; Azari H; Ejtemaei Mehr S; Akbari M; Modarres Mousavi SM; Attari F; Alipour F; Hassanzadeh G; Gorji A
    Brain Res; 2016 Jul; 1642():197-208. PubMed ID: 27038753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freshly Thawed Cryobanked Human Neural Stem Cells Engraft within Endogenous Neurogenic Niches and Restore Cognitive Function after Chronic Traumatic Brain Injury.
    Badner A; Reinhardt EK; Nguyen TV; Midani N; Marshall AT; Lepe CA; Echeverria K; Lepe JJ; Torrecampo V; Bertan SH; Tran SH; Anderson AJ; Cummings BJ
    J Neurotrauma; 2021 Oct; 38(19):2731-2746. PubMed ID: 34130484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury.
    Shi W; Huang CJ; Xu XD; Jin GH; Huang RQ; Huang JF; Chen YN; Ju SQ; Wang Y; Shi YW; Qin JB; Zhang YQ; Liu QQ; Wang XB; Zhang XH; Chen J
    Acta Biomater; 2016 Nov; 45():247-261. PubMed ID: 27592818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Stem Cell Transplantation Promotes Functional Recovery from Traumatic Brain Injury via Brain Derived Neurotrophic Factor-Mediated Neuroplasticity.
    Xiong LL; Hu Y; Zhang P; Zhang Z; Li LH; Gao GD; Zhou XF; Wang TH
    Mol Neurobiol; 2018 Mar; 55(3):2696-2711. PubMed ID: 28421542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplantation of neural stem cells enhances expression of synaptic protein and promotes functional recovery in a rat model of traumatic brain injury.
    Ma H; Yu B; Kong L; Zhang Y; Shi Y
    Mol Med Rep; 2011; 4(5):849-56. PubMed ID: 21687946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host sex and transplanted human induced pluripotent stem cell phenotype interact to influence sensorimotor recovery in a mouse model of cortical contusion injury.
    Nieves MD; Furmanski O; Doughty ML
    Brain Res; 2020 Dec; 1748():147120. PubMed ID: 32926852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury.
    Skardelly M; Gaber K; Burdack S; Scheidt F; Hilbig H; Boltze J; Förschler A; Schwarz S; Schwarz J; Meixensberger J; Schuhmann MU
    J Neurotrauma; 2011 Mar; 28(3):401-14. PubMed ID: 21083415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.