These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23469998)

  • 1. Penetration of nanoparticles into human skin.
    Liang XW; Xu ZP; Grice J; Zvyagin AV; Roberts MS; Liu X
    Curr Pharm Des; 2013; 19(35):6353-66. PubMed ID: 23469998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetration and storage of particles in human skin: perspectives and safety aspects.
    Lademann J; Richter H; Schanzer S; Knorr F; Meinke M; Sterry W; Patzelt A
    Eur J Pharm Biopharm; 2011 Apr; 77(3):465-8. PubMed ID: 21056659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles skin absorption: New aspects for a safety profile evaluation.
    Larese Filon F; Mauro M; Adami G; Bovenzi M; Crosera M
    Regul Toxicol Pharmacol; 2015 Jul; 72(2):310-22. PubMed ID: 25979643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles do not penetrate human skin--a theoretical perspective.
    Watkinson AC; Bunge AL; Hadgraft J; Lane ME
    Pharm Res; 2013 Aug; 30(8):1943-6. PubMed ID: 23722409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties.
    Gu Y; Yang M; Tang X; Wang T; Yang D; Zhai G; Liu J
    J Nanobiotechnology; 2018 Sep; 16(1):68. PubMed ID: 30217198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane.
    Li Y; Zhang X; Cao D
    Soft Matter; 2014 Sep; 10(35):6844-56. PubMed ID: 25082334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel.
    Sun L; Liu Z; Wang L; Cun D; Tong HHY; Yan R; Chen X; Wang R; Zheng Y
    J Control Release; 2017 May; 254():44-54. PubMed ID: 28344018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives on percutaneous penetration: Silica nanoparticles.
    Nafisi S; Schäfer-Korting M; Maibach HI
    Nanotoxicology; 2015; 9(5):643-57. PubMed ID: 25286334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter?
    Tak YK; Pal S; Naoghare PK; Rangasamy S; Song JM
    Sci Rep; 2015 Nov; 5():16908. PubMed ID: 26584777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol.
    Lalloz A; Bolzinger MA; Faivre J; Latreille PL; Garcia Ac A; Rakotovao C; Rabanel JM; Hildgen P; Banquy X; Briançon S
    Int J Pharm; 2018 Dec; 553(1-2):120-131. PubMed ID: 30316003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles.
    Wang M; Lai X; Shao L; Li L
    Int J Nanomedicine; 2018; 13():4445-4459. PubMed ID: 30122919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focus on skin as a possible port of entry for solid nanoparticles and the toxicological impact.
    Smijs TG; Bouwstra JA
    J Biomed Nanotechnol; 2010 Oct; 6(5):469-84. PubMed ID: 21329042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycaprolactone Based Nanoparticles Loaded with Indomethacin for Anti-Inflammatory Therapy: From Preparation to Ex Vivo Study.
    Badri W; Miladi K; Robin S; Viennet C; Nazari QA; Agusti G; Fessi H; Elaissari A
    Pharm Res; 2017 Sep; 34(9):1773-1783. PubMed ID: 28527126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin.
    Jensen LB; Petersson K; Nielsen HM
    Eur J Pharm Biopharm; 2011 Sep; 79(1):68-75. PubMed ID: 21664463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review.
    Labouta HI; Schneider M
    Nanomedicine; 2013 Jan; 9(1):39-54. PubMed ID: 22542824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application.
    Chen M; Liu X; Fahr A
    Int J Pharm; 2011 Apr; 408(1-2):223-34. PubMed ID: 21316430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cutaneous penetration of soft nanoparticles via photodamaged skin: Lipid-based and polymer-based nanocarriers for drug delivery.
    Hung CF; Chen WY; Hsu CY; Aljuffali IA; Shih HC; Fang JY
    Eur J Pharm Biopharm; 2015 Aug; 94():94-105. PubMed ID: 25986584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug delivery with topically applied nanoparticles: science fiction or reality.
    Lademann J; Richter H; Meinke MC; Lange-Asschenfeldt B; Antoniou C; Mak WC; Renneberg R; Sterry W; Patzelt A
    Skin Pharmacol Physiol; 2013; 26(4-6):227-33. PubMed ID: 23921109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review to support the derivation of a worst-case dermal penetration value for nanoparticles.
    Gimeno-Benito I; Giusti A; Dekkers S; Haase A; Janer G
    Regul Toxicol Pharmacol; 2021 Feb; 119():104836. PubMed ID: 33249100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnology approaches for pain therapy through transdermal drug delivery.
    Peptu C; Rotaru R; Ignat L; Humelnicu AC; Harabagiu V; Peptu CA; Leon MM; Mitu F; Cojocaru E; Boca A; Tamba BI
    Curr Pharm Des; 2015; 21(42):6125-39. PubMed ID: 26503147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.