BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23470081)

  • 1. Halogenation of bisphenol-A, triclosan, and phenols in chlorinated waters containing iodide.
    Vikesland PJ; Fiss EM; Wigginton KR; McNeill K; Arnold WA
    Environ Sci Technol; 2013 Jul; 47(13):6764-72. PubMed ID: 23470081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine.
    Canosa P; Morales S; Rodríguez I; Rubí E; Cela R; Gómez M
    Anal Bioanal Chem; 2005 Dec; 383(7-8):1119-26. PubMed ID: 16261326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triclosan reactivity in chloraminated waters.
    Greyshock AE; Vikesland PJ
    Environ Sci Technol; 2006 Apr; 40(8):2615-22. PubMed ID: 16683600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging.
    Duirk SE; Lindell C; Cornelison CC; Kormos J; Ternes TA; Attene-Ramos M; Osiol J; Wagner ED; Plewa MJ; Richardson SD
    Environ Sci Technol; 2011 Aug; 45(16):6845-54. PubMed ID: 21761849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorination of bisphenol A: kinetics and by-products formation.
    Gallard H; Leclercq A; Croué JP
    Chemosphere; 2004 Aug; 56(5):465-73. PubMed ID: 15212912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-line solid-phase microextraction of triclosan, bisphenol A, chlorophenols, and selected pharmaceuticals in environmental water samples by high-performance liquid chromatography-ultraviolet detection.
    Kim D; Han J; Choi Y
    Anal Bioanal Chem; 2013 Jan; 405(1):377-87. PubMed ID: 23086088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan.
    Rule KL; Ebbett VR; Vikesland PJ
    Environ Sci Technol; 2005 May; 39(9):3176-85. PubMed ID: 15926568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.
    Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA
    Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products.
    Fiss EM; Rule KL; Vikesland PJ
    Environ Sci Technol; 2007 Apr; 41(7):2387-94. PubMed ID: 17438791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time detection and identification of aqueous chlorine transformation products using QTOF MS.
    Vanderford BJ; Mawhinney DB; Rosario-Ortiz FL; Snyder SA
    Anal Chem; 2008 Jun; 80(11):4193-9. PubMed ID: 18465880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous chlorination of diclofenac: kinetic study and transformation products identification.
    Soufan M; Deborde M; Legube B
    Water Res; 2012 Jun; 46(10):3377-86. PubMed ID: 22525458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyl free radical reactivity toward aqueous chlorinated phenols.
    Zimbron JA; Reardon KF
    Water Res; 2005 Mar; 39(5):865-9. PubMed ID: 15743632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation and transformation pathways of chlorophenols formed from chlorination of phenol at trace level concentration.
    Nunez-Gaytan AM; Vera-Avila LE; De Llasera MG; Covarrubias-Herrera R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1213-22. PubMed ID: 20563915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection.
    Buth JM; Ross MR; McNeill K; Arnold WA
    Chemosphere; 2011 Aug; 84(9):1238-43. PubMed ID: 21652055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.
    Criquet J; Allard S; Salhi E; Joll CA; Heitz A; von Gunten U
    Environ Sci Technol; 2012 Jul; 46(13):7350-7. PubMed ID: 22667818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.
    Acero JL; Piriou P; von Gunten U
    Water Res; 2005 Aug; 39(13):2979-93. PubMed ID: 15985278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bromination kinetics of phenolic compounds in aqueous solution.
    Guo G; Lin F
    J Hazard Mater; 2009 Oct; 170(2-3):645-51. PubMed ID: 19524361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan.
    Wu Q; Shi H; Adams CD; Timmons T; Ma Y
    Sci Total Environ; 2012 Nov; 439():18-25. PubMed ID: 23059968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable quantification of bisphenol A and its chlorinated derivatives in human breast milk using UPLC-MS/MS method.
    Cariot A; Dupuis A; Albouy-Llaty M; Legube B; Rabouan S; Migeot V
    Talanta; 2012 Oct; 100():175-82. PubMed ID: 23141326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation.
    Suarez S; Dodd MC; Omil F; von Gunten U
    Water Res; 2007 Jun; 41(12):2481-90. PubMed ID: 17467034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.