BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23470081)

  • 21. Speciation and transformation pathways of chlorophenols formed from chlorination of phenol at trace level concentration.
    Nunez-Gaytan AM; Vera-Avila LE; De Llasera MG; Covarrubias-Herrera R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1213-22. PubMed ID: 20563915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection.
    Buth JM; Ross MR; McNeill K; Arnold WA
    Chemosphere; 2011 Aug; 84(9):1238-43. PubMed ID: 21652055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of iodide on transformation of phenolic compounds by nonradical activation of peroxydisulfate in the presence of carbon nanotube: Kinetics, impacting factors, and formation of iodinated aromatic products.
    Guan C; Jiang J; Pang S; Luo C; Yang Y; Ma J; Yu J; Zhao X
    Chemosphere; 2018 Oct; 208():559-568. PubMed ID: 29890494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.
    Criquet J; Allard S; Salhi E; Joll CA; Heitz A; von Gunten U
    Environ Sci Technol; 2012 Jul; 46(13):7350-7. PubMed ID: 22667818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chlorination of bisphenol S: Kinetics, products, and effect of humic acid.
    Gao Y; Jiang J; Zhou Y; Pang SY; Ma J; Jiang C; Yang Y; Huang ZS; Gu J; Guo Q; Duan JB; Li J
    Water Res; 2018 Mar; 131():208-217. PubMed ID: 29289922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.
    Acero JL; Piriou P; von Gunten U
    Water Res; 2005 Aug; 39(13):2979-93. PubMed ID: 15985278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.
    Ye T; Xu B; Lin YL; Hu CY; Lin L; Zhang TY; Gao NY
    Water Res; 2013 Jun; 47(9):3006-14. PubMed ID: 23561492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the disinfection byproducts of bisphenol S and the disrupting effect on peroxisome proliferator-activated receptor gamma (PPARγ) induced by chlorination.
    Zheng S; Shi J; Zhang J; Yang Y; Hu J; Shao B
    Water Res; 2018 Apr; 132():167-176. PubMed ID: 29331639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.
    Criquet J; Rodriguez EM; Allard S; Wellauer S; Salhi E; Joll CA; von Gunten U
    Water Res; 2015 Nov; 85():476-86. PubMed ID: 26379203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of triclosan by chlorine dioxide: Reaction mechanism,2,4-dichlorophenol accumulation and toxicity evaluation.
    Li Q; Yu J; Chen W; Ma X; Li G; Chen G; Deng J
    Chemosphere; 2018 Sep; 207():449-456. PubMed ID: 29807344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate.
    Jiang J; Gao Y; Pang SY; Lu XT; Zhou Y; Ma J; Wang Q
    Environ Sci Technol; 2015 Jan; 49(1):520-8. PubMed ID: 25437924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The bromination kinetics of phenolic compounds in aqueous solution.
    Guo G; Lin F
    J Hazard Mater; 2009 Oct; 170(2-3):645-51. PubMed ID: 19524361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coagulation of Iodide-Containing Resorcinol Solution or Natural Waters with Ferric Chloride Can Produce Iodinated Coagulation Byproducts.
    Ding S; Deng Y; Li H; Fang C; Gao N; Chu W
    Environ Sci Technol; 2019 Nov; 53(21):12407-12415. PubMed ID: 31553594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan.
    Wu Q; Shi H; Adams CD; Timmons T; Ma Y
    Sci Total Environ; 2012 Nov; 439():18-25. PubMed ID: 23059968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliable quantification of bisphenol A and its chlorinated derivatives in human breast milk using UPLC-MS/MS method.
    Cariot A; Dupuis A; Albouy-Llaty M; Legube B; Rabouan S; Migeot V
    Talanta; 2012 Oct; 100():175-82. PubMed ID: 23141326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation.
    Suarez S; Dodd MC; Omil F; von Gunten U
    Water Res; 2007 Jun; 41(12):2481-90. PubMed ID: 17467034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Chlorination of ethynyl estradiol: a kinetic and mechanistic study].
    Wang BN; Liu GQ; Kong DY; Lu JH
    Huan Jing Ke Xue; 2013 Jun; 34(6):2225-31. PubMed ID: 23947037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aqueous chlorination of carbamazepine: kinetic study and transformation product identification.
    Soufan M; Deborde M; Delmont A; Legube B
    Water Res; 2013 Sep; 47(14):5076-87. PubMed ID: 23891541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aqueous chlorination of the antibacterial agent trimethoprim: reaction kinetics and pathways.
    Dodd MC; Huang CH
    Water Res; 2007 Feb; 41(3):647-55. PubMed ID: 17173950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A.
    Xiao X; Hao R; Liang M; Zuo X; Nan J; Li L; Zhang W
    J Hazard Mater; 2012 Sep; 233-234():122-30. PubMed ID: 22818177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.