These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23470160)

  • 1. Effect of radio frequency waves of electromagnetic field on the tubulin.
    Taghi M; Gholamhosein R; Saeed RZ
    Recent Pat Endocr Metab Immune Drug Discov; 2013 Sep; 7(3):252-6. PubMed ID: 23470160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electromagnetic field on the polymerization of microtubules extracted from rat brain.
    Taghi M; Gholamhosein R; Saeed RZ
    Recent Pat Endocr Metab Immune Drug Discov; 2012 Sep; 6(3):251-4. PubMed ID: 22845336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of polymerization and structural behavior of microtubules in rat brain and sperm affected by the extremely low-frequency electromagnetic field.
    Gholami D; Riazi G; Fathi R; Sharafi M; Shahverdi A
    BMC Mol Cell Biol; 2019 Aug; 20(1):41. PubMed ID: 31464580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced polymerization of polar macromolecules by an applied electric field with application to mitosis.
    Meggs WJ
    J Theor Biol; 1990 Jul; 145(2):245-55. PubMed ID: 2402158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency electric field and radiation characteristics of cellular microtubule network.
    Havelka D; Cifra M; Kučera O; Pokorný J; Vrba J
    J Theor Biol; 2011 Oct; 286(1):31-40. PubMed ID: 21782830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brief exposure to high magnetic fields determines microtubule self-organisation by reaction-diffusion processes.
    Glade N; Tabony J
    Biophys Chem; 2005 May; 115(1):29-35. PubMed ID: 15848281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity.
    Jacquot JF; le Bail JL; Bardet M; Tabony J
    Rev Sci Instrum; 2010 Nov; 81(11):115103. PubMed ID: 21133497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic differences: A possible source for the functional differences between MCF7 and brain microtubules.
    Feizabadi MS; Rosario B; Hernandez MAV
    Biochem Biophys Res Commun; 2017 Nov; 493(1):388-392. PubMed ID: 28887032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of Electromagnetic Field by Microtubules.
    Pokorný J; Pokorný J; Vrba J
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ionizing radiation on the polymerization of microtubules in vitro.
    Zaremba TG; Irwin RD
    Biochemistry; 1981 Mar; 20(5):1323-32. PubMed ID: 7225332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of 2450-MHz microwave radiation during microtubular polymerization in vitro.
    Ortner MJ; Galvin MJ; Irwin RD
    Radiat Res; 1983 Feb; 93(2):353-63. PubMed ID: 6823518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field generated by axial longitudinal vibration modes of microtubule.
    Cifra M; Pokorný J; Havelka D; Kucera O
    Biosystems; 2010 May; 100(2):122-31. PubMed ID: 20178826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein.
    Gheshlaghi ZN; Riazi GH; Ahmadian S; Ghafari M; Mahinpour R
    Acta Biochim Biophys Sin (Shanghai); 2008 Sep; 40(9):777-82. PubMed ID: 18776989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis.
    Díaz-Celis C; Risca VI; Hurtado F; Polka JK; Hansen SD; Maturana D; Lagos R; Mullins RD; Monasterio O
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28716960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on the mesoscopic dynamic effects of tumor treating fields on cell tubulin].
    Li X; Liu K; Guo C; Fang T; Yang F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Jun; 41(3):569-576. PubMed ID: 38932544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the protofilament number in microtubules by templates.
    Vater W; Böhm KJ; Steinmetzer P; Unger E
    Acta Histochem Suppl; 1990; 39():347-55. PubMed ID: 2080278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of cytoplasmic microtubules by ultraviolet radiation.
    Zamansky GB; Perrino BA; Chou IN
    Exp Cell Res; 1991 Jul; 195(1):269-73. PubMed ID: 1676000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of gamma-irradiation on microtubule assembly in vitro.
    Gal V; Trajković D
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Oct; 46(4):435-42. PubMed ID: 6334056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules.
    Weisenberg RC; Deery WJ; Dickinson PJ
    Biochemistry; 1976 Sep; 15(19):4248-54. PubMed ID: 963034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly.
    Lobert S; Ingram JW; Correia JJ
    Cancer Res; 1999 Oct; 59(19):4816-22. PubMed ID: 10519390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.