These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23470233)

  • 1. Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers.
    Zellnitz S; Redlinger-Pohn JD; Kappl M; Schroettner H; Urbanetz NA
    Int J Pharm; 2013 Apr; 447(1-2):132-8. PubMed ID: 23470233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of surface characteristics of modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization performance.
    Zellnitz S; Schroettner H; Urbanetz NA
    Drug Dev Ind Pharm; 2015; 41(10):1710-7. PubMed ID: 25632978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano- and Microstructured model carrier surfaces to alter dry powder inhaler performance.
    Renner N; Steckel H; Urbanetz N; Scherließ R
    Int J Pharm; 2017 Feb; 518(1-2):20-28. PubMed ID: 28025073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations.
    Donovan MJ; Smyth HD
    Int J Pharm; 2010 Dec; 402(1-2):1-9. PubMed ID: 20816928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of drug loading on formulation structure and aerosol performance in carrier based dry powder inhalers.
    Young PM; Wood O; Ooi J; Traini D
    Int J Pharm; 2011 Sep; 416(1):129-35. PubMed ID: 21708238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray dried mannitol carrier particles with tailored surface properties--the influence of carrier surface roughness and shape.
    Littringer EM; Mescher A; Schroettner H; Achelis L; Walzel P; Urbanetz NA
    Eur J Pharm Biopharm; 2012 Sep; 82(1):194-204. PubMed ID: 22595133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the optimisation and adaptation of dry powder inhalers.
    Cui Y; Schmalfuß S; Zellnitz S; Sommerfeld M; Urbanetz N
    Int J Pharm; 2014 Aug; 470(1-2):120-32. PubMed ID: 24792975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces.
    Zhou QT; Morton DA
    Adv Drug Deliv Rev; 2012 Mar; 64(3):275-84. PubMed ID: 21782866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan-based binary dry powder inhaler carrier with nanometer roughness for improving in vitro and in vivo aerosolization performance.
    Huang Y; Huang Z; Zhang X; Zhao Z; Zhang X; Wang K; Ma C; Zhu C; Pan X; Wu C
    Drug Deliv Transl Res; 2018 Oct; 8(5):1274-1288. PubMed ID: 30112607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactose characteristics and the generation of the aerosol.
    Pilcer G; Wauthoz N; Amighi K
    Adv Drug Deliv Rev; 2012 Mar; 64(3):233-56. PubMed ID: 21616107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate.
    Kaialy W; Ticehurst M; Nokhodchi A
    Int J Pharm; 2012 Feb; 423(2):184-94. PubMed ID: 22197772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New method for divesting cobalt-chromium alloy castings: sandblasting with a mixed abrasive powder.
    Taga Y; Kawai K; Nokubi T
    J Prosthet Dent; 2001 Apr; 85(4):357-62. PubMed ID: 11319533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2012 Apr; 80(3):596-603. PubMed ID: 22198291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of inverse gas chromatography for the study of lactose and pharmaceutical materials used in dry powder inhalers.
    Jones MD; Young P; Traini D
    Adv Drug Deliv Rev; 2012 Mar; 64(3):285-93. PubMed ID: 22265843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical view on lactose-based drug formulation and device studies for dry powder inhalation: which are relevant and what interactions to expect?
    de Boer AH; Chan HK; Price R
    Adv Drug Deliv Rev; 2012 Mar; 64(3):257-74. PubMed ID: 21565232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of carrier on the performance of dry powder inhalers.
    Saint-Lorant G; Leterme P; Gayot A; Flament MP
    Int J Pharm; 2007 Apr; 334(1-2):85-91. PubMed ID: 17113733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems.
    Ooi J; Traini D; Hoe S; Wong W; Young PM
    Int J Pharm; 2011 Jul; 413(1-2):1-9. PubMed ID: 21501674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carrier particle shape on dry powder inhaler performance.
    Kaialy W; Alhalaweh A; Velaga SP; Nokhodchi A
    Int J Pharm; 2011 Dec; 421(1):12-23. PubMed ID: 21945739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation.
    Grasmeijer F; Frijlink HW; de Boer AH
    Eur J Pharm Sci; 2014 Jun; 56():102-4. PubMed ID: 24613490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of carrier roughness on adhesion, content uniformity and the in vitro deposition of terbutaline sulphate from dry powder inhalers.
    Flament MP; Leterme P; Gayot A
    Int J Pharm; 2004 May; 275(1-2):201-9. PubMed ID: 15081150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.