BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

861 related articles for article (PubMed ID: 23470539)

  • 1. Targeting cellular metabolism to improve cancer therapeutics.
    Zhao Y; Butler EB; Tan M
    Cell Death Dis; 2013 Mar; 4(3):e532. PubMed ID: 23470539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA regulation and analytical methods in cancer cell metabolism.
    Zhang LF; Jiang S; Liu MF
    Cell Mol Life Sci; 2017 Aug; 74(16):2929-2941. PubMed ID: 28321489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycolysis Inhibitors for Anticancer Therapy: A Review of Recent Patents.
    Sheng H; Tang W
    Recent Pat Anticancer Drug Discov; 2016; 11(3):297-308. PubMed ID: 27087655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging metabolic targets in cancer therapy.
    Zhao Y; Liu H; Riker AI; Fodstad O; Ledoux SP; Wilson GL; Tan M
    Front Biosci (Landmark Ed); 2011 Jan; 16(5):1844-60. PubMed ID: 21196269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer.
    Akins NS; Nielson TC; Le HV
    Curr Top Med Chem; 2018; 18(6):494-504. PubMed ID: 29788892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance.
    Huang X; Gan G; Wang X; Xu T; Xie W
    Autophagy; 2019 Jul; 15(7):1258-1279. PubMed ID: 30786811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target?
    Zhang W; Zhang SL; Hu X; Tam KY
    Int J Biol Sci; 2015; 11(12):1390-400. PubMed ID: 26681918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer cell metabolism: implications for therapeutic targets.
    Jang M; Kim SS; Lee J
    Exp Mol Med; 2013 Oct; 45(10):e45. PubMed ID: 24091747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth.
    Reckzeh ES; Karageorgis G; Schwalfenberg M; Ceballos J; Nowacki J; Stroet MCM; Binici A; Knauer L; Brand S; Choidas A; Strohmann C; Ziegler S; Waldmann H
    Cell Chem Biol; 2019 Sep; 26(9):1214-1228.e25. PubMed ID: 31303578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate.
    Seth P; Grant A; Tang J; Vinogradov E; Wang X; Lenkinski R; Sukhatme VP
    Neoplasia; 2011 Jan; 13(1):60-71. PubMed ID: 21245941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents.
    Zhou Y; Guo Y; Tam KY
    Expert Opin Ther Pat; 2022 Apr; 32(4):441-453. PubMed ID: 35001793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent metabolic dysregulation in cancer and Alzheimer's disease.
    Harris RA; Tindale L; Cumming RC
    Biogerontology; 2014 Dec; 15(6):559-77. PubMed ID: 25305052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids.
    Cervantes-Madrid D; Dueñas-González A
    Oncol Rep; 2015 Sep; 34(3):1533-42. PubMed ID: 26134042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic?
    Gstraunthaler G; Seppi T; Pfaller W
    Cell Physiol Biochem; 1999; 9(3):150-72. PubMed ID: 10494029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognostic role of glycolysis for cancer outcome: evidence from 86 studies.
    Yu M; Chen S; Hong W; Gu Y; Huang B; Lin Y; Zhou Y; Jin H; Deng Y; Tu L; Hou B; Jian Z
    J Cancer Res Clin Oncol; 2019 Apr; 145(4):967-999. PubMed ID: 30825027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression.
    Xu X; Li J; Sun X; Guo Y; Chu D; Wei L; Li X; Yang G; Liu X; Yao L; Zhang J; Shen L
    Oncotarget; 2015 Sep; 6(28):26161-76. PubMed ID: 26317652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.
    Marín-Hernández A; López-Ramírez SY; Del Mazo-Monsalvo I; Gallardo-Pérez JC; Rodríguez-Enríquez S; Moreno-Sánchez R; Saavedra E
    FEBS J; 2014 Aug; 281(15):3325-45. PubMed ID: 24912776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target.
    Hur H; Xuan Y; Kim YB; Lee G; Shim W; Yun J; Ham IH; Han SU
    Int J Oncol; 2013 Jan; 42(1):44-54. PubMed ID: 23135628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid β and other toxins by decreasing mitochondrial respiration and reactive oxygen species production.
    Newington JT; Rappon T; Albers S; Wong DY; Rylett RJ; Cumming RC
    J Biol Chem; 2012 Oct; 287(44):37245-58. PubMed ID: 22948140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting cancer metabolism through synthetic lethality-based combinatorial treatment strategies.
    Bajpai R; Shanmugam M
    Curr Opin Oncol; 2018 Sep; 30(5):338-344. PubMed ID: 29994904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.