BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

862 related articles for article (PubMed ID: 23470539)

  • 41. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase.
    Mazzio E; Badisa R; Mack N; Cassim S; Zdralevic M; Pouyssegur J; Soliman KFA
    Cancer Genomics Proteomics; 2020; 17(5):469-497. PubMed ID: 32859627
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A review of isozymes in cancer.
    Criss WE
    Cancer Res; 1971 Nov; 31(11):1523-42. PubMed ID: 4399291
    [No Abstract]   [Full Text] [Related]  

  • 43. Targeting cancer metabolism to develop human lactate dehydrogenase (hLDH)5 inhibitors.
    Zhang SL; He Y; Tam KY
    Drug Discov Today; 2018 Jul; 23(7):1407-1415. PubMed ID: 29750903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation.
    Eleftheriadis T; Pissas G; Antoniadi G; Spanoulis A; Liakopoulos V; Stefanidis I
    Int Immunol; 2014 Dec; 26(12):673-84. PubMed ID: 25064493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pyruvate kinase M knockdown-induced signaling via AMP-activated protein kinase promotes mitochondrial biogenesis, autophagy, and cancer cell survival.
    Prakasam G; Singh RK; Iqbal MA; Saini SK; Tiku AB; Bamezai RNK
    J Biol Chem; 2017 Sep; 292(37):15561-15576. PubMed ID: 28778925
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities.
    Lauer MM; de Oliveira CB; Yano NL; Bianchini A
    Comp Biochem Physiol C Toxicol Pharmacol; 2012 Nov; 156(3-4):140-7. PubMed ID: 22892099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amyloid beta resistance in nerve cell lines is mediated by the Warburg effect.
    Newington JT; Pitts A; Chien A; Arseneault R; Schubert D; Cumming RC
    PLoS One; 2011 Apr; 6(4):e19191. PubMed ID: 21541279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of small molecule inhibitors of pyruvate kinase M2.
    Vander Heiden MG; Christofk HR; Schuman E; Subtelny AO; Sharfi H; Harlow EE; Xian J; Cantley LC
    Biochem Pharmacol; 2010 Apr; 79(8):1118-24. PubMed ID: 20005212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Altered glycolysis results in drug-resistant in clinical tumor therapy.
    Peng J; Cui Y; Xu S; Wu X; Huang Y; Zhou W; Wang S; Fu Z; Xie H
    Oncol Lett; 2021 May; 21(5):369. PubMed ID: 33747225
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acetylation control of metabolic enzymes in cancer: an updated version.
    Huang W; Wang Z; Lei QY
    Acta Biochim Biophys Sin (Shanghai); 2014 Mar; 46(3):204-13. PubMed ID: 24480802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Omega-3 polyunsaturated fatty acid promotes the inhibition of glycolytic enzymes and mTOR signaling by regulating the tumor suppressor LKB1.
    Andrade-Vieira R; Han JH; Marignani PA
    Cancer Biol Ther; 2013 Nov; 14(11):1050-8. PubMed ID: 24025358
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of glycolytic enzyme and isoenzyme activity in breast cancers and dysplasia.
    Katić KB
    Med Pregl; 2012; 65(5-6):200-5. PubMed ID: 22730703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer.
    Matés JM; Di Paola FJ; Campos-Sandoval JA; Mazurek S; Márquez J
    Semin Cell Dev Biol; 2020 Feb; 98():34-43. PubMed ID: 31100352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase.
    Golias T; Kery M; Radenkovic S; Papandreou I
    Int J Cancer; 2019 Feb; 144(4):674-686. PubMed ID: 30121950
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isozymes and cancer.
    Schapira F
    Adv Cancer Res; 1973; 18():77-153. PubMed ID: 4357923
    [No Abstract]   [Full Text] [Related]  

  • 56. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism.
    Zhao Y; Liu H; Liu Z; Ding Y; Ledoux SP; Wilson GL; Voellmy R; Lin Y; Lin W; Nahta R; Liu B; Fodstad O; Chen J; Wu Y; Price JE; Tan M
    Cancer Res; 2011 Jul; 71(13):4585-97. PubMed ID: 21498634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cancer stem cell metabolism: a potential target for cancer therapy.
    Deshmukh A; Deshpande K; Arfuso F; Newsholme P; Dharmarajan A
    Mol Cancer; 2016 Nov; 15(1):69. PubMed ID: 27825361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting Pyruvate Kinase M2 and Hexokinase II, Pachymic Acid Impairs Glucose Metabolism and Induces Mitochondrial Apoptosis.
    Miao G; Han J; Zhang J; Wu Y; Tong G
    Biol Pharm Bull; 2019 Jan; 42(1):123-129. PubMed ID: 30381614
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzymatic differences between hycanthone-resistant and sensitive strains of Schistosoma mansoni.
    Doong YC; Wong LJ; Bruce JI; Wong SS
    Comp Biochem Physiol B; 1987; 87(3):459-64. PubMed ID: 2957147
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism.
    Ždralević M; Brand A; Di Ianni L; Dettmer K; Reinders J; Singer K; Peter K; Schnell A; Bruss C; Decking SM; Koehl G; Felipe-Abrio B; Durivault J; Bayer P; Evangelista M; O'Brien T; Oefner PJ; Renner K; Pouysségur J; Kreutz M
    J Biol Chem; 2018 Oct; 293(41):15947-15961. PubMed ID: 30158244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.