BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

716 related articles for article (PubMed ID: 23470552)

  • 1. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects.
    Krajacic A; Weishaupt N; Girgis J; Tetzlaff W; Fouad K
    Behav Brain Res; 2010 Dec; 214(2):323-31. PubMed ID: 20573587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rehabilitative training improves skilled forelimb motor function after cervical unilateral contusion spinal cord injury in rats.
    Lucas-Osma AM; Schmidt EKA; Vavrek R; Bennett DJ; Fouad K; Fenrich KK
    Behav Brain Res; 2022 Mar; 422():113731. PubMed ID: 34979221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury.
    Weishaupt N; Li S; Di Pardo A; Sipione S; Fouad K
    Behav Brain Res; 2013 Feb; 239():31-42. PubMed ID: 23131414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.
    Fenrich KK; May Z; Torres-Espín A; Forero J; Bennett DJ; Fouad K
    Behav Brain Res; 2016 Feb; 299():59-71. PubMed ID: 26611563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired arpeggio movement in skilled reaching by rubrospinal tract lesions in the rat: a behavioral/anatomical fractionation.
    Morris R; Tosolini AP; Goldstein JD; Whishaw IQ
    J Neurotrauma; 2011 Dec; 28(12):2439-51. PubMed ID: 21612320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rehabilitative training following unilateral pyramidotomy in adult rats improves forelimb function in a non-task-specific way.
    Starkey ML; Bleul C; Maier IC; Schwab ME
    Exp Neurol; 2011 Nov; 232(1):81-9. PubMed ID: 21867701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal pathways involved in the control of forelimb motor function in rats.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2007 Aug; 206(2):318-31. PubMed ID: 17603042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dorsolateral funiculus lesioning of the mouse cervical spinal cord at C4 but not at C6 results in sustained forelimb motor deficits.
    Hilton BJ; Assinck P; Duncan GJ; Lu D; Lo S; Tetzlaff W
    J Neurotrauma; 2013 Jun; 30(12):1070-83. PubMed ID: 23517185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cervical dorsolateral funiculotomy on reach-to-grasp function in the rat.
    Stackhouse SK; Murray M; Shumsky JS
    J Neurotrauma; 2008 Aug; 25(8):1039-47. PubMed ID: 18721108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-directed rehabilitation training intensity thresholds for efficient recovery of skilled forelimb function in rats with cervical spinal cord injury.
    Fenrich KK; Hallworth BW; Vavrek R; Raposo PJF; Misiaszek JE; Bennett DJ; Fouad K; Torres-Espin A
    Exp Neurol; 2021 May; 339():113543. PubMed ID: 33290776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing forelimb function after unilateral cervical spinal cord injury: novel forelimb tasks predict lesion severity and recovery.
    Khaing ZZ; Geissler SA; Jiang S; Milman BD; Aguilar SV; Schmidt CE; Schallert T
    J Neurotrauma; 2012 Feb; 29(3):488-98. PubMed ID: 22022897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery.
    Girgis J; Merrett D; Kirkland S; Metz GA; Verge V; Fouad K
    Brain; 2007 Nov; 130(Pt 11):2993-3003. PubMed ID: 17928316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced functional recovery by delaying motor training after spinal cord injury.
    Norrie BA; Nevett-Duchcherer JM; Gorassini MA
    J Neurophysiol; 2005 Jul; 94(1):255-64. PubMed ID: 15985696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury.
    Zörner B; Bachmann LC; Filli L; Kapitza S; Gullo M; Bolliger M; Starkey ML; Röthlisberger M; Gonzenbach RR; Schwab ME
    Brain; 2014 Jun; 137(Pt 6):1716-32. PubMed ID: 24736305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of subcortical pathways promote recovery of skilled hand function in rats after corticospinal and rubrospinal tract injuries.
    García-Alías G; Truong K; Shah PK; Roy RR; Edgerton VR
    Exp Neurol; 2015 Apr; 266():112-9. PubMed ID: 25666586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.
    Wong JK; Steward O
    Exp Neurol; 2012 Feb; 233(2):693-707. PubMed ID: 22078754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.