BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

715 related articles for article (PubMed ID: 23470552)

  • 21. Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats.
    Chen XY; Carp JS; Chen L; Wolpaw JR
    Exp Brain Res; 2002 May; 144(1):88-94. PubMed ID: 11976762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys.
    Nishimura Y; Isa T
    Exp Neurol; 2012 May; 235(1):152-61. PubMed ID: 21884698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion.
    May Z; Fouad K; Shum-Siu A; Magnuson DSK
    Behav Brain Res; 2015 Sep; 291():26-35. PubMed ID: 25975172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.
    Vavrek R; Girgis J; Tetzlaff W; Hiebert GW; Fouad K
    Brain; 2006 Jun; 129(Pt 6):1534-45. PubMed ID: 16632552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of rehabilitative training on recovery of hand motor function: a review of animal studies.
    Higo N
    Neurosci Res; 2014 Jan; 78():9-15. PubMed ID: 24080147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implications of poly(N-isopropylacrylamide)-g-poly(ethylene glycol) with codissolved brain-derived neurotrophic factor injectable scaffold on motor function recovery rate following cervical dorsolateral funiculotomy in the rat.
    Grous LC; Vernengo J; Jin Y; Himes BT; Shumsky JS; Fischer I; Lowman A
    J Neurosurg Spine; 2013 Jun; 18(6):641-52. PubMed ID: 23581453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. D-amphetamine enhances skilled reaching after ischemic cortical lesions in rats.
    Adkins DL; Jones TA
    Neurosci Lett; 2005 Jun; 380(3):214-8. PubMed ID: 15862888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury.
    Martinez M; Brezun JM; Zennou-Azogui Y; Baril N; Xerri C
    Eur J Neurosci; 2009 Dec; 30(12):2356-67. PubMed ID: 20092578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasticity of motor network and function in the absence of corticospinal projection.
    Han Q; Cao C; Ding Y; So KF; Wu W; Qu Y; Zhou L
    Exp Neurol; 2015 May; 267():194-208. PubMed ID: 25792481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity-based therapies to promote forelimb use after a cervical spinal cord injury.
    Dai H; MacArthur L; McAtee M; Hockenbury N; Tidwell JL; McHugh B; Mansfield K; Finn T; Hamers FP; Bregman BS
    J Neurotrauma; 2009 Oct; 26(10):1719-32. PubMed ID: 19317604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats.
    Alam M; Garcia-Alias G; Jin B; Keyes J; Zhong H; Roy RR; Gerasimenko Y; Lu DC; Edgerton VR
    Exp Neurol; 2017 May; 291():141-150. PubMed ID: 28192079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.
    Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME
    Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome.
    Filli L; Zörner B; Weinmann O; Schwab ME
    Brain; 2011 Aug; 134(Pt 8):2261-73. PubMed ID: 21752788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats.
    Lynskey JV; Sandhu FA; Dai HN; McAtee M; Slotkin JR; MacArthur L; Bregman BS
    J Neurotrauma; 2006 May; 23(5):617-34. PubMed ID: 16689666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Learned baduse" limits recovery of skilled reaching for food after forelimb motor cortex stroke in rats: a new analysis of the effect of gestures on success.
    Alaverdashvili M; Foroud A; Lim DH; Whishaw IQ
    Behav Brain Res; 2008 Apr; 188(2):281-90. PubMed ID: 18155782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The differential effects of cervical and thoracic dorsal funiculus lesions in rats.
    Kanagal SG; Muir GD
    Behav Brain Res; 2008 Mar; 187(2):379-86. PubMed ID: 18037173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury.
    Torres-Espín A; Forero J; Fenrich KK; Lucas-Osma AM; Krajacic A; Schmidt E; Vavrek R; Raposo P; Bennett DJ; Popovich PG; Fouad K
    Brain; 2018 Jul; 141(7):1946-1962. PubMed ID: 29860396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Training following unilateral cervical spinal cord injury in rats affects the contralesional forelimb.
    Weishaupt N; Vavrek R; Fouad K
    Neurosci Lett; 2013 Feb; 539():77-81. PubMed ID: 23384567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.