These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23470559)

  • 1. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.
    Warren LM; Mackenzie A; Dance DR; Young KC
    Phys Med Biol; 2013 Apr; 58(7):N103-13. PubMed ID: 23470559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of simulation of calcifications for observer studies in digital mammography.
    Warren LM; Green FH; Shrestha L; Mackenzie A; Dance DR; Young KC
    Phys Med Biol; 2013 Aug; 58(16):N217-28. PubMed ID: 23880732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of dual-energy digital mammography for calcification imaging.
    Kappadath SC; Shaw CC
    Phys Med Biol; 2004 Jun; 49(12):2563-76. PubMed ID: 15272674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of breast calcification types using dual energy x-ray method.
    Martini N; Koukou V; Fountos G; Michail C; Bakas A; Kandarakis I; Speller R; Nikiforidis G
    Phys Med Biol; 2017 Sep; 62(19):7741-7764. PubMed ID: 28777746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the contrast of the calcification in digital mammography system: Gate validation.
    Arefan D; Talebpour A; Ahmadinejhad N; Asl AK
    J Cancer Res Ther; 2018; 14(2):335-340. PubMed ID: 29516915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic imaging of breast microcalcifications: a validation study with 3-dimensional ex vivo data and spectrophotometric measurement.
    Kang J; Kim EK; Kim GR; Yoon C; Song TK; Chang JH
    J Biophotonics; 2015 Jan; 8(1-2):71-80. PubMed ID: 23996971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination Between Calcium Hydroxyapatite and Calcium Oxalate Using Multienergy Spectral Photon-Counting CT.
    Kirkbride TE; Raja AY; Müller K; Bateman CJ; Becce F; Anderson NG
    AJR Am J Roentgenol; 2017 Nov; 209(5):1088-1092. PubMed ID: 28834448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach.
    Ghammraoui B; Bader S; Thuering T; Glick SJ
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36716475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithmic scatter correction in dual-energy digital mammography.
    Chen X; Nishikawa RM; Chan ST; Lau BA; Zhang L; Mou X
    Med Phys; 2013 Nov; 40(11):111919. PubMed ID: 24320452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-energy digital mammography for calcification imaging: scatter and nonuniformity corrections.
    Kappadath SC; Shaw CC
    Med Phys; 2005 Nov; 32(11):3395-408. PubMed ID: 16372415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of breast arterial calcification using full field digital mammography.
    Molloi S; Xu T; Ducote J; Iribarren C
    Med Phys; 2008 Apr; 35(4):1428-39. PubMed ID: 18491538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SU-E-I-61: Phantom Design for Phase Contrast Breast Imaging.
    Vedantham S; Karellas A
    Med Phys; 2012 Jun; 39(6Part5):3638-3639. PubMed ID: 28517657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ambient light and view box luminance on the detection of calcifications in mammography.
    Kimme-Smith C; Haus AG; DeBruhl N; Bassett LW
    AJR Am J Roentgenol; 1997 Mar; 168(3):775-8. PubMed ID: 9057533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-energy digital mammography: calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio.
    Kappadath SC; Shaw CC
    Med Phys; 2003 Jun; 30(6):1110-7. PubMed ID: 12852535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-energy digital mammography for calcification imaging: noise reduction techniques.
    Kappadath SC; Shaw CC
    Phys Med Biol; 2008 Oct; 53(19):5421-43. PubMed ID: 18765887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium oxalate is associated with benign breast tissue. Can we avoid biopsy?
    Winston JS; Yeh IT; Evers K; Friedman AK
    Am J Clin Pathol; 1993 Nov; 100(5):488-92. PubMed ID: 8249886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray phase contrast imaging of the breast: analysis of tissue simulating materials.
    Vedantham S; Karellas A
    Med Phys; 2013 Apr; 40(4):041906. PubMed ID: 23556900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the feasibility of classifying breast microcalcifications using photon-counting spectral mammography: A simulation study.
    Ghammraoui B; Glick SJ
    Med Phys; 2017 Jun; 44(6):2304-2311. PubMed ID: 28332199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of microcalcifications for insertion into phantoms used to evaluate x-ray breast imaging systems.
    Ghammraoui B; Zidan A; Alayoubi A; Zidan A; Glick SJ
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34375962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A four-alternative forced choice (4AFC) methodology for evaluating microcalcification detection in clinical full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) systems using an inkjet-printed anthropomorphic phantom.
    Ikejimba LC; Salad J; Graff CG; Ghammraoui B; Cheng WC; Lo JY; Glick SJ
    Med Phys; 2019 Sep; 46(9):3883-3892. PubMed ID: 31135960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.