BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 23471138)

  • 1. CO, NO and O
    Spiro TG; Soldatova AV; Balakrishnan G
    Coord Chem Rev; 2013 Jan; 257(2):511-527. PubMed ID: 23471138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure and ligand vibrations in FeNO, CoNO, and FeOO porphyrin adducts.
    Soldatova AV; Ibrahim M; Spiro TG
    Inorg Chem; 2013 Jul; 52(13):7478-86. PubMed ID: 23763617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambidentate H-bonding of NO and O2 in heme proteins.
    Spiro TG; Soldatova AV
    J Inorg Biochem; 2012 Oct; 115():204-10. PubMed ID: 22824153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential sensing of protein influences by NO and CO vibrations in heme adducts.
    Ibrahim M; Xu C; Spiro TG
    J Am Chem Soc; 2006 Dec; 128(51):16834-45. PubMed ID: 17177434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of the heme-CO vibrational modes in the H-NOX family.
    Tran R; Weinert EE; Boon EM; Mathies RA; Marletta MA
    Biochemistry; 2011 Aug; 50(30):6519-30. PubMed ID: 21714509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative modes of O
    Soldatova AV; Spiro TG
    J Inorg Biochem; 2020 Jun; 207():111054. PubMed ID: 32217351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman Spectroscopy and Density Functional Theory Calculations on Ferrous Porphyrin Dioxygen Adducts with Different Axial Ligands: Correlation of Ground State Wave Function and Geometric Parameters with Experimental Vibrational Frequencies.
    Singha A; Das PK; Dey A
    Inorg Chem; 2019 Aug; 58(16):10704-10715. PubMed ID: 31356064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambidentate H-bonding by heme-bound NO: structural and spectral effects of -O versus -N H-bonding.
    Xu C; Thomas GS
    J Biol Inorg Chem; 2008 May; 13(4):613-21. PubMed ID: 18274790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New light on NO bonding in Fe(III) heme proteins from resonance Raman spectroscopy and DFT modeling.
    Soldatova AV; Ibrahim M; Olson JS; Czernuszewicz RS; Spiro TG
    J Am Chem Soc; 2010 Apr; 132(13):4614-25. PubMed ID: 20218710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT analysis of axial and equatorial effects on heme-CO vibrational modes: applications to CooA and H-NOX heme sensor proteins.
    Xu C; Ibrahim M; Spiro TG
    Biochemistry; 2008 Feb; 47(8):2379-87. PubMed ID: 18217776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex formation of cytochrome P450cam with Putidaredoxin. Evidence for protein-specific interactions involving the proximal thiolate ligand.
    Unno M; Christian JF; Sjodin T; Benson DE; Macdonald ID; Sligar SG; Champion PM
    J Biol Chem; 2002 Jan; 277(4):2547-53. PubMed ID: 11706033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron twin-coronet porphyrins as models of myoglobin and hemoglobin: amphibious electrostatic effects of overhanging hydroxyl groups for successful CO/O2 discrimination.
    Tani F; Matsu-ura M; Ariyama K; Setoyama T; Shimada T; Kobayashi S; Hayashi T; Matsuo T; Hisaeda Y; Naruta Y
    Chemistry; 2003 Feb; 9(4):862-70. PubMed ID: 12584701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic ground states and vibrational frequency shifts of diatomic ligands in heme adducts.
    Liu Y; Sun H
    J Comput Chem; 2011 May; 32(7):1279-85. PubMed ID: 21425285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of Cu(B) with Carbon Monoxide in Cytochrome c Oxidase: Origin of the Anomalous Correlation between the Fe-CO and C-O Stretching Frequencies.
    Egawa T; Haber J; Fee JA; Yeh SR; Rousseau DL
    J Phys Chem B; 2015 Jul; 119(27):8509-20. PubMed ID: 26056844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon monoxide adducts of KatG and KatG(S315T) as probes of the heme site and isoniazid binding.
    Lukat-Rodgers GS; Wengenack NL; Rusnak F; Rodgers KR
    Biochemistry; 2001 Jun; 40(24):7149-57. PubMed ID: 11401561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with Resonance raman spectroscopy.
    Deinum G; Stone JR; Babcock GT; Marletta MA
    Biochemistry; 1996 Feb; 35(5):1540-7. PubMed ID: 8634285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO as a vibrational probe of heme protein active sites.
    Spiro TG; Wasbotten IH
    J Inorg Biochem; 2005 Jan; 99(1):34-44. PubMed ID: 15598489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.