These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23471471)

  • 21. LC-MSsim--a simulation software for liquid chromatography mass spectrometry data.
    Schulz-Trieglaff O; Pfeifer N; Gröpl C; Kohlbacher O; Reinert K
    BMC Bioinformatics; 2008 Oct; 9():423. PubMed ID: 18842122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo peptide sequencing using CID and HCD spectra pairs.
    Yan Y; Kusalik AJ; Wu FX
    Proteomics; 2016 Oct; 16(20):2615-2624. PubMed ID: 27402425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PepSOM: an algorithm for peptide identification by tandem mass spectrometry based on SOM.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2006; 17(2):194-205. PubMed ID: 17503392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2007; 19():119-30. PubMed ID: 18546510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel clustering algorithm for large data sets with applications in bioinformatics.
    Olman V; Mao F; Wu H; Xu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):344-52. PubMed ID: 19407357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extending a Tandem Mass Spectral Library to Include MS
    Yang X; Neta P; Stein SE
    J Am Soc Mass Spectrom; 2017 Nov; 28(11):2280-2287. PubMed ID: 28721670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-parametric Bayesian approach to post-translational modification refinement of predictions from tandem mass spectrometry.
    Chung C; Emili A; Frey BJ
    Bioinformatics; 2013 Apr; 29(7):821-9. PubMed ID: 23419374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clustering and filtering tandem mass spectra acquired in data-independent mode.
    Pak H; Nikitin F; Gluck F; Lisacek F; Scherl A; Muller M
    J Am Soc Mass Spectrom; 2013 Dec; 24(12):1862-71. PubMed ID: 24006250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-spectra peptide sequencing and its applications to multistage mass spectrometry.
    Bandeira N; Olsen JV; Mann JV; Mann M; Pevzner PA
    Bioinformatics; 2008 Jul; 24(13):i416-23. PubMed ID: 18785330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral clustering in peptidomics studies helps to unravel modification profile of biologically active peptides and enhances peptide identification rate.
    Menschaert G; Vandekerckhove TT; Landuyt B; Hayakawa E; Schoofs L; Luyten W; Van Criekinge W
    Proteomics; 2009 Sep; 9(18):4381-8. PubMed ID: 19658089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A grammar-based distance metric enables fast and accurate clustering of large sets of 16S sequences.
    Russell DJ; Way SF; Benson AK; Sayood K
    BMC Bioinformatics; 2010 Dec; 11():601. PubMed ID: 21167044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DtaRefinery, a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra data sets.
    Petyuk VA; Mayampurath AM; Monroe ME; Polpitiya AD; Purvine SO; Anderson GA; Camp DG; Smith RD
    Mol Cell Proteomics; 2010 Mar; 9(3):486-96. PubMed ID: 20019053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MaRaCluster: A Fragment Rarity Metric for Clustering Fragment Spectra in Shotgun Proteomics.
    The M; Käll L
    J Proteome Res; 2016 Mar; 15(3):713-20. PubMed ID: 26653874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A graph-theoretic approach for the separation of b and y ions in tandem mass spectra.
    Yan B; Pan C; Olman VN; Hettich RL; Xu Y
    Bioinformatics; 2005 Mar; 21(5):563-74. PubMed ID: 15454408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods.
    Shen Y; Tolić N; Xie F; Zhao R; Purvine SO; Schepmoes AA; Moore RJ; Anderson GA; Smith RD
    J Proteome Res; 2011 Sep; 10(9):3929-43. PubMed ID: 21678914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry.
    Aoshima K; Takahashi K; Ikawa M; Kimura T; Fukuda M; Tanaka S; Parry HE; Fujita Y; Yoshizawa AC; Utsunomiya S; Kajihara S; Tanaka K; Oda Y
    BMC Bioinformatics; 2014 Nov; 15(1):376. PubMed ID: 25420746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations.
    Elias JE; Haas W; Faherty BK; Gygi SP
    Nat Methods; 2005 Sep; 2(9):667-75. PubMed ID: 16118637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic classification of acute leukemias by alignment-based quantitation of LC-MS/MS data sets.
    Foss EJ; Radulovic D; Stirewalt DL; Radich J; Sala-Torra O; Pogosova-Agadjanyan EL; Hengel SM; Loeb KR; Deeg HJ; Meshinchi S; Goodlett DR; Bedalov A
    J Proteome Res; 2012 Oct; 11(10):5005-10. PubMed ID: 22900933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NovoHCD: de novo peptide sequencing from HCD spectra.
    Yan Y; Kusalik AJ; Wu FX
    IEEE Trans Nanobioscience; 2014 Jun; 13(2):65-72. PubMed ID: 24771591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A spectral clustering approach to MS/MS identification of post-translational modifications.
    Falkner JA; Falkner JW; Yocum AK; Andrews PC
    J Proteome Res; 2008 Nov; 7(11):4614-22. PubMed ID: 18800783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.