These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 23471660)

  • 81. [Bone and tooth in calcium and phosphate metabolism].
    Tamamura Y; Yamaguchi A
    Clin Calcium; 2012 Jan; 22(1):11-7. PubMed ID: 22201094
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Therapeutic potential of klotho-FGF23 fusion polypeptides: WO2009095372.
    Razzaque MS
    Expert Opin Ther Pat; 2010 Jul; 20(7):981-5. PubMed ID: 20459364
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Klotho expression in long bones regulates FGF23 production during renal failure.
    Kaludjerovic J; Komaba H; Sato T; Erben RG; Baron R; Olauson H; Larsson TE; Lanske B
    FASEB J; 2017 May; 31(5):2050-2064. PubMed ID: 28183805
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [FGF23 and skeletal metabolism].
    Michigami T
    Clin Calcium; 2014 Jun; 24(6):879-84. PubMed ID: 24870839
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The Klotho gene family as a regulator of endocrine fibroblast growth factors.
    Kurosu H; Kuro-O M
    Mol Cell Endocrinol; 2009 Feb; 299(1):72-8. PubMed ID: 19063940
    [TBL] [Abstract][Full Text] [Related]  

  • 86. FGF23 or PTH: which comes first in CKD ?
    Isakova T; Wolf MS
    Kidney Int; 2010 Nov; 78(10):947-9. PubMed ID: 21030968
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Minireview: fibroblast growth factor 23 in phosphate homeostasis and bone metabolism.
    Hori M; Shimizu Y; Fukumoto S
    Endocrinology; 2011 Jan; 152(1):4-10. PubMed ID: 21084445
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting.
    Bacchetta J; Bardet C; Prié D
    Metabolism; 2020 Feb; 103S():153865. PubMed ID: 30664852
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis.
    Nabeshima Y
    Cell Mol Life Sci; 2008 Oct; 65(20):3218-30. PubMed ID: 18726073
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression.
    Meyer MB; Pike JW
    J Steroid Biochem Mol Biol; 2020 Feb; 196():105500. PubMed ID: 31629064
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism.
    Shimada T; Kakitani M; Yamazaki Y; Hasegawa H; Takeuchi Y; Fujita T; Fukumoto S; Tomizuka K; Yamashita T
    J Clin Invest; 2004 Feb; 113(4):561-8. PubMed ID: 14966565
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Correlation among hyperphosphatemia, type II sodium phosphate transporter activity, and vitamin D metabolism in Fgf-23 null mice.
    Sitara D
    Ann N Y Acad Sci; 2007 Nov; 1116():485-93. PubMed ID: 17646263
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis.
    Larsson T; Marsell R; Schipani E; Ohlsson C; Ljunggren O; Tenenhouse HS; Jüppner H; Jonsson KB
    Endocrinology; 2004 Jul; 145(7):3087-94. PubMed ID: 14988389
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Tumour-induced osteomalacia.
    Minisola S; Peacock M; Fukumoto S; Cipriani C; Pepe J; Tella SH; Collins MT
    Nat Rev Dis Primers; 2017 Jul; 3():17044. PubMed ID: 28703220
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Endocrine fibroblast growth factors as regulators of metabolic homeostasis.
    Kurosu H; Kuro-O M
    Biofactors; 2009; 35(1):52-60. PubMed ID: 19319846
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Hormonal regulation of phosphate balance].
    Tanaka H; Fukagawa M
    Clin Calcium; 2012 Oct; 22(10):1477-85. PubMed ID: 23023626
    [TBL] [Abstract][Full Text] [Related]  

  • 97. FGF23 functions and disease.
    Cipriani C; Minisola S; Colangelo L; DE Martino V; Ferrone F; Biamonte F; Danese V; Sonato C; Santori R; Occhiuto M; Pepe J
    Minerva Endocrinol (Torino); 2022 Dec; 47(4):437-448. PubMed ID: 33792238
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Muscle plasticity is influenced by renal function and caloric intake through the FGF23-vitamin D axis.
    Acevedo LM; Vidal Á; Aguilera-Tejero E; Rivero JL
    Am J Physiol Cell Physiol; 2023 Jan; 324(1):C14-C28. PubMed ID: 36409180
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Novel bone endocrine networks integrating mineral and energy metabolism.
    Pi M; Quarles LD
    Curr Osteoporos Rep; 2013 Dec; 11(4):391-9. PubMed ID: 24193547
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A systems biology preview of the relationships between mineral and metabolic complications in chronic kidney disease.
    Quarles LD
    Semin Nephrol; 2013 Mar; 33(2):130-42. PubMed ID: 23465500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.