These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23472131)

  • 1. Comparative analysis of DNA word abundances in four yeast genomes using a novel statistical background model.
    Hariharan R; Simon R; Pillai MR; Taylor TD
    PLoS One; 2013; 8(3):e58038. PubMed ID: 23472131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic DNA k-mer spectra: models and modalities.
    Chor B; Horn D; Goldman N; Levy Y; Massingham T
    Genome Biol; 2009; 10(10):R108. PubMed ID: 19814784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K-mer-Based Motif Analysis in Insect Species across
    Cserhati M; Xiao P; Guda C
    Comput Math Methods Med; 2019; 2019():4259479. PubMed ID: 31827584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of transcriptional regulatory sites in non-coding genomic region.
    Xue W; Wang J; Shen Z; Zhu H
    Bioinformatics; 2004 Mar; 20(4):569-75. PubMed ID: 14990453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution patterns of over-represented k-mers in non-coding yeast DNA.
    Hampson S; Kibler D; Baldi P
    Bioinformatics; 2002 Apr; 18(4):513-28. PubMed ID: 12016049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.
    Mohamed Hashim EK; Abdullah R
    J Theor Biol; 2015 Dec; 387():88-100. PubMed ID: 26427337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics reveals long, evolutionarily conserved, low-complexity islands in yeast proteins.
    Romov PA; Li F; Lipke PN; Epstein SL; Qiu WG
    J Mol Evol; 2006 Sep; 63(3):415-25. PubMed ID: 16927006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust k-mer frequency estimation using gapped k-mers.
    Ghandi M; Mohammad-Noori M; Beer MA
    J Math Biol; 2014 Aug; 69(2):469-500. PubMed ID: 23861010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of yeast DNA using hidden Markov models.
    Peshkin L; Gelfand MS
    Bioinformatics; 1999 Dec; 15(12):980-6. PubMed ID: 10745987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmer: an Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-mers and Genomic Features.
    Zhu Q; Gao S; Xiao B; He Z; Hu S
    Microbiol Spectr; 2023 Jun; 11(3):e0464522. PubMed ID: 37191574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering of DNA words and biological function: a proof of principle.
    Hackenberg M; Rueda A; Carpena P; Bernaola-Galván P; Barturen G; Oliver JL
    J Theor Biol; 2012 Mar; 297():127-36. PubMed ID: 22226985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequencing and comparison of yeast species to identify genes and regulatory elements.
    Kellis M; Patterson N; Endrizzi M; Birren B; Lander ES
    Nature; 2003 May; 423(6937):241-54. PubMed ID: 12748633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics.
    McCutcheon JP; Eddy SR
    Nucleic Acids Res; 2003 Jul; 31(14):4119-28. PubMed ID: 12853629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automaton approach for waiting times in DNA evolution.
    Behrens S; Nicaud C; Nicodème P
    J Comput Biol; 2012 May; 19(5):550-62. PubMed ID: 22468677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joker de Bruijn: Covering k-Mers Using Joker Characters.
    Orenstein Y; Yu YW; Berger B
    J Comput Biol; 2018 Nov; 25(11):1171-1178. PubMed ID: 30117747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K-mer natural vector and its application to the phylogenetic analysis of genetic sequences.
    Wen J; Chan RH; Yau SC; He RL; Yau SS
    Gene; 2014 Aug; 546(1):25-34. PubMed ID: 24858075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.