These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23472643)

  • 1. Nanoparticles adsorbed at the water/oil interface: coverage and composition effects on structure and diffusion.
    Luu XC; Yu J; Striolo A
    Langmuir; 2013 Jun; 29(24):7221-8. PubMed ID: 23472643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ellipsoidal Janus nanoparticles adsorbed at the water-oil interface: some evidence of emergent behavior.
    Luu XC; Yu J; Striolo A
    J Phys Chem B; 2013 Nov; 117(44):13922-9. PubMed ID: 24087908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional real-time tracking of nanoparticles at an oil-water interface.
    Du K; Liddle JA; Berglund AJ
    Langmuir; 2012 Jun; 28(25):9181-8. PubMed ID: 22667449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle effects on the water-oil interfacial tension.
    Fan H; Striolo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051610. PubMed ID: 23214796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil-Water Interfaces.
    Yong X
    Langmuir; 2015 Oct; 31(42):11458-69. PubMed ID: 26439456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning high aqueous phase uptake in nonionic water-in-oil microemulsions for the synthesis of Mn-Zn ferrite nanoparticles: phase behavior, characterization, and nanoparticle synthesis.
    Aubery C; Solans C; Sanchez-Dominguez M
    Langmuir; 2011 Dec; 27(23):14005-13. PubMed ID: 22039992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ellipsoidal Janus nanoparticles assembled at spherical oil/water interfaces.
    Luu XC; Striolo A
    J Phys Chem B; 2014 Nov; 118(47):13737-43. PubMed ID: 25358124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing diffusion of single nanoparticles at water-oil interfaces.
    Wang D; Yordanov S; Paroor HM; Mukhopadhyay A; Li CY; Butt HJ; Koynov K
    Small; 2011 Dec; 7(24):3502-7. PubMed ID: 22072585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphiphilic silica nanoparticles at the decane-water interface: insights from atomistic simulations.
    Fan H; Resasco DE; Striolo A
    Langmuir; 2011 May; 27(9):5264-74. PubMed ID: 21449581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact angles in relation to emulsions stabilised solely by silica nanoparticles including systems containing room temperature ionic liquids.
    Binks BP; Dyab AK; Fletcher PD
    Phys Chem Chem Phys; 2007 Dec; 9(48):6391-7. PubMed ID: 18060169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid diffusion at the oil-water interface.
    Walder RB; Honciuc A; Schwartz DK
    J Phys Chem B; 2010 Sep; 114(35):11484-8. PubMed ID: 20707362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring the three-phase contact angle of nanoparticles at fluid interfaces.
    Arnaudov LN; Cayre OJ; Cohen Stuart MA; Stoyanov SD; Paunov VN
    Phys Chem Chem Phys; 2010 Jan; 12(2):328-31. PubMed ID: 20023808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, diffusion, and permeability of protein-stabilized monodispersed oil in water emulsions and their gels: a self-diffusion NMR study.
    Romoscanu AI; Fenollosa A; Acquistapace S; Gunes D; Martins-Deuchande T; Clausen P; Mezzenga R; Nydén M; Zick K; Hughes E
    Langmuir; 2010 May; 26(9):6184-92. PubMed ID: 20369894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does the mobility of phospholipid molecules at a water/oil interface reflect the viscosity of the surrounding oil?
    Negishi M; Seto H; Hase M; Yoshikawa K
    Langmuir; 2008 Aug; 24(16):8431-4. PubMed ID: 18646878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brownian Diffusion of Individual Janus Nanoparticles at Water/Oil Interfaces.
    Wang D; Zhu YL; Zhao Y; Li CY; Mukhopadhyay A; Sun ZY; Koynov K; Butt HJ
    ACS Nano; 2020 Aug; 14(8):10095-10103. PubMed ID: 32662990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic structure of hydrophobic surfaces: the oil-water interface.
    Bresme F; Chacón E; Tarazona P; Tay K
    Phys Rev Lett; 2008 Aug; 101(5):056102. PubMed ID: 18764409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.
    Binks BP; Fletcher PD; Holt BL; Beaussoubre P; Wong K
    Langmuir; 2010 Dec; 26(23):18024-30. PubMed ID: 21067125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces.
    Xu L; Han G; Hu J; He Y; Pan J; Li Y; Xiang J
    Phys Chem Chem Phys; 2009 Aug; 11(30):6490-7. PubMed ID: 19809681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and diffusion of nanoparticle monolayers floating at liquid/vapor interfaces: a molecular dynamics study.
    Cheng S; Grest GS
    J Chem Phys; 2012 Jun; 136(21):214702. PubMed ID: 22697561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip.
    Priest C; Reid MD; Whitby CP
    J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.