BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23473006)

  • 1. Biocompatibility of pristine graphene for neuronal interface.
    Sahni D; Jea A; Mata JA; Marcano DC; Sivaganesan A; Berlin JM; Tatsui CE; Sun Z; Luerssen TG; Meng S; Kent TA; Tour JM
    J Neurosurg Pediatr; 2013 May; 11(5):575-83. PubMed ID: 23473006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of crystalline quality on neuronal affinity of pristine graphene.
    Veliev F; Briançon-Marjollet A; Bouchiat V; Delacour C
    Biomaterials; 2016 Apr; 86():33-41. PubMed ID: 26878439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biocompatibility of silicon containing micro-arc oxidation coated magnesium alloy ZK60 with osteoblasts cultured in vitro].
    Yang X; Yin Q; Zhang Y; Li M; Lan G; Lin X; Tan L; Yang K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):612-8. PubMed ID: 23879103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of neuronal cell adhesion by covalent binding of poly-D-lysine.
    Kim YH; Baek NS; Han YH; Chung MA; Jung SD
    J Neurosci Methods; 2011 Oct; 202(1):38-44. PubMed ID: 21907237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts.
    Lasocka I; Szulc-Dąbrowska L; Skibniewski M; Skibniewska E; Strupinski W; Pasternak I; Kmieć H; Kowalczyk P
    Toxicol In Vitro; 2018 Apr; 48():276-285. PubMed ID: 29409908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Graphene as Candidate Biomaterial for Synthetic Keratoprosthesis Skirt.
    Tan XW; Thompson B; Konstantopoulos A; Goh TW; Setiawan M; Yam GH; Tan D; Khor KA; Mehta JS
    Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6605-11. PubMed ID: 26465888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons.
    Ai H; Meng H; Ichinose I; Jones SA; Mills DK; Lvov YM; Qiao X
    J Neurosci Methods; 2003 Sep; 128(1-2):1-8. PubMed ID: 12948543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene for improved femtosecond laser based pluripotent stem cell transfection.
    Mthunzi P; He K; Ngcobo S; Khanyile T; Warner JH
    J Biophotonics; 2014 May; 7(5):351-62. PubMed ID: 23996967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide: a nonspecific enhancer of cellular growth.
    Ruiz ON; Fernando KA; Wang B; Brown NA; Luo PG; McNamara ND; Vangsness M; Sun YP; Bunker CE
    ACS Nano; 2011 Oct; 5(10):8100-7. PubMed ID: 21932790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite.
    Jin L; Zeng Z; Kuddannaya S; Wu D; Zhang Y; Wang Z
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1011-8. PubMed ID: 26670811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombogenicity and biocompatibility studies of reduced graphene oxide modified acellular pulmonary valve tissue.
    Wilczek P; Major R; Lipinska L; Lackner J; Mzyk A
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():310-21. PubMed ID: 26042719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys.
    Hinüber C; Kleemann C; Friederichs RJ; Haubold L; Scheibe HJ; Schuelke T; Boehlert C; Baumann MJ
    J Biomed Mater Res A; 2010 Nov; 95(2):388-400. PubMed ID: 20648536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats.
    Palejwala AH; Fridley JS; Mata JA; Samuel EL; Luerssen TG; Perlaky L; Kent TA; Tour JM; Jea A
    Surg Neurol Int; 2016; 7():75. PubMed ID: 27625885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of standard surface chemistries for culturing mesenchymal stem cells prior to neural differentiation.
    Ho M; Yu D; Davidsion MC; Silva GA
    Biomaterials; 2006 Aug; 27(24):4333-9. PubMed ID: 16647114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Based Interfaces Do Not Alter Target Nerve Cells.
    Fabbro A; Scaini D; León V; Vázquez E; Cellot G; Privitera G; Lombardi L; Torrisi F; Tomarchio F; Bonaccorso F; Bosi S; Ferrari AC; Ballerini L; Prato M
    ACS Nano; 2016 Jan; 10(1):615-23. PubMed ID: 26700626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transparent conducting films based on reduced graphene oxide multilayers for biocompatible neuronal interfaces.
    Kim SM; Joo P; Ahn G; Cho IH; Kim DH; Song WK; Kim BS; Yoon MH
    J Biomed Nanotechnol; 2013 Mar; 9(3):403-8. PubMed ID: 23620995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro toxicity evaluation of graphene oxide on A549 cells.
    Chang Y; Yang ST; Liu JH; Dong E; Wang Y; Cao A; Liu Y; Wang H
    Toxicol Lett; 2011 Feb; 200(3):201-10. PubMed ID: 21130147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior.
    Zhao C; Lu X; Zanden C; Liu J
    Biomed Mater; 2015 Feb; 10(1):015019. PubMed ID: 25668049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces.
    Curran JM; Chen R; Hunt JA
    Biomaterials; 2005 Dec; 26(34):7057-67. PubMed ID: 16023712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion and proliferation of cells on new polymers modified biomaterials.
    Lakard S; Herlem G; Propper A; Kastner A; Michel G; Vallès-Villarreal N; Gharbi T; Fahys B
    Bioelectrochemistry; 2004 Apr; 62(1):19-27. PubMed ID: 14990322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.