These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 23473006)
1. Biocompatibility of pristine graphene for neuronal interface. Sahni D; Jea A; Mata JA; Marcano DC; Sivaganesan A; Berlin JM; Tatsui CE; Sun Z; Luerssen TG; Meng S; Kent TA; Tour JM J Neurosurg Pediatr; 2013 May; 11(5):575-83. PubMed ID: 23473006 [TBL] [Abstract][Full Text] [Related]
2. Impact of crystalline quality on neuronal affinity of pristine graphene. Veliev F; Briançon-Marjollet A; Bouchiat V; Delacour C Biomaterials; 2016 Apr; 86():33-41. PubMed ID: 26878439 [TBL] [Abstract][Full Text] [Related]
3. [Biocompatibility of silicon containing micro-arc oxidation coated magnesium alloy ZK60 with osteoblasts cultured in vitro]. Yang X; Yin Q; Zhang Y; Li M; Lan G; Lin X; Tan L; Yang K Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):612-8. PubMed ID: 23879103 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of neuronal cell adhesion by covalent binding of poly-D-lysine. Kim YH; Baek NS; Han YH; Chung MA; Jung SD J Neurosci Methods; 2011 Oct; 202(1):38-44. PubMed ID: 21907237 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts. Lasocka I; Szulc-Dąbrowska L; Skibniewski M; Skibniewska E; Strupinski W; Pasternak I; Kmieć H; Kowalczyk P Toxicol In Vitro; 2018 Apr; 48():276-285. PubMed ID: 29409908 [TBL] [Abstract][Full Text] [Related]
6. Application of Graphene as Candidate Biomaterial for Synthetic Keratoprosthesis Skirt. Tan XW; Thompson B; Konstantopoulos A; Goh TW; Setiawan M; Yam GH; Tan D; Khor KA; Mehta JS Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6605-11. PubMed ID: 26465888 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons. Ai H; Meng H; Ichinose I; Jones SA; Mills DK; Lvov YM; Qiao X J Neurosci Methods; 2003 Sep; 128(1-2):1-8. PubMed ID: 12948543 [TBL] [Abstract][Full Text] [Related]
8. Graphene for improved femtosecond laser based pluripotent stem cell transfection. Mthunzi P; He K; Ngcobo S; Khanyile T; Warner JH J Biophotonics; 2014 May; 7(5):351-62. PubMed ID: 23996967 [TBL] [Abstract][Full Text] [Related]
9. Graphene oxide: a nonspecific enhancer of cellular growth. Ruiz ON; Fernando KA; Wang B; Brown NA; Luo PG; McNamara ND; Vangsness M; Sun YP; Bunker CE ACS Nano; 2011 Oct; 5(10):8100-7. PubMed ID: 21932790 [TBL] [Abstract][Full Text] [Related]
10. Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite. Jin L; Zeng Z; Kuddannaya S; Wu D; Zhang Y; Wang Z ACS Appl Mater Interfaces; 2016 Jan; 8(1):1011-8. PubMed ID: 26670811 [TBL] [Abstract][Full Text] [Related]
11. Thrombogenicity and biocompatibility studies of reduced graphene oxide modified acellular pulmonary valve tissue. Wilczek P; Major R; Lipinska L; Lackner J; Mzyk A Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():310-21. PubMed ID: 26042719 [TBL] [Abstract][Full Text] [Related]
12. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys. Hinüber C; Kleemann C; Friederichs RJ; Haubold L; Scheibe HJ; Schuelke T; Boehlert C; Baumann MJ J Biomed Mater Res A; 2010 Nov; 95(2):388-400. PubMed ID: 20648536 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats. Palejwala AH; Fridley JS; Mata JA; Samuel EL; Luerssen TG; Perlaky L; Kent TA; Tour JM; Jea A Surg Neurol Int; 2016; 7():75. PubMed ID: 27625885 [TBL] [Abstract][Full Text] [Related]
14. Comparison of standard surface chemistries for culturing mesenchymal stem cells prior to neural differentiation. Ho M; Yu D; Davidsion MC; Silva GA Biomaterials; 2006 Aug; 27(24):4333-9. PubMed ID: 16647114 [TBL] [Abstract][Full Text] [Related]
15. Graphene-Based Interfaces Do Not Alter Target Nerve Cells. Fabbro A; Scaini D; León V; Vázquez E; Cellot G; Privitera G; Lombardi L; Torrisi F; Tomarchio F; Bonaccorso F; Bosi S; Ferrari AC; Ballerini L; Prato M ACS Nano; 2016 Jan; 10(1):615-23. PubMed ID: 26700626 [TBL] [Abstract][Full Text] [Related]
16. Transparent conducting films based on reduced graphene oxide multilayers for biocompatible neuronal interfaces. Kim SM; Joo P; Ahn G; Cho IH; Kim DH; Song WK; Kim BS; Yoon MH J Biomed Nanotechnol; 2013 Mar; 9(3):403-8. PubMed ID: 23620995 [TBL] [Abstract][Full Text] [Related]
17. In vitro toxicity evaluation of graphene oxide on A549 cells. Chang Y; Yang ST; Liu JH; Dong E; Wang Y; Cao A; Liu Y; Wang H Toxicol Lett; 2011 Feb; 200(3):201-10. PubMed ID: 21130147 [TBL] [Abstract][Full Text] [Related]
18. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Zhao C; Lu X; Zanden C; Liu J Biomed Mater; 2015 Feb; 10(1):015019. PubMed ID: 25668049 [TBL] [Abstract][Full Text] [Related]
19. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Curran JM; Chen R; Hunt JA Biomaterials; 2005 Dec; 26(34):7057-67. PubMed ID: 16023712 [TBL] [Abstract][Full Text] [Related]
20. Adhesion and proliferation of cells on new polymers modified biomaterials. Lakard S; Herlem G; Propper A; Kastner A; Michel G; Vallès-Villarreal N; Gharbi T; Fahys B Bioelectrochemistry; 2004 Apr; 62(1):19-27. PubMed ID: 14990322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]