BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 23473108)

  • 1. Benchmark studies on the building blocks of DNA. 3. Watson-Crick and stacked base pairs.
    Szalay PG; Watson T; Perera A; Lotrich V; Bartlett RJ
    J Phys Chem A; 2013 Apr; 117(15):3149-57. PubMed ID: 23473108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the exact solution of the electronic Schrödinger equation for noncovalent molecular interactions: worldwide distributed quantum monte carlo calculations.
    Korth M; Lüchow A; Grimme S
    J Phys Chem A; 2008 Mar; 112(10):2104-9. PubMed ID: 18201073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmark studies on the building blocks of DNA. 1. Superiority of coupled cluster methods in describing the excited states of nucleobases in the Franck-Condon region.
    Szalay PG; Watson T; Perera A; Lotrich VF; Bartlett RJ
    J Phys Chem A; 2012 Jun; 116(25):6702-10. PubMed ID: 22587574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach.
    Hesselmann A; Jansen G; Schütz M
    J Am Chem Soc; 2006 Sep; 128(36):11730-1. PubMed ID: 16953592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct assessment of interresidue forces in Watson-Crick base pairs using theoretical compliance constants.
    Grunenberg J
    J Am Chem Soc; 2004 Dec; 126(50):16310-1. PubMed ID: 15600318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking for perturbative triple-excitations in EE-EOM-CC methods.
    Watson TJ; Lotrich VF; Szalay PG; Perera A; Bartlett RJ
    J Phys Chem A; 2013 Mar; 117(12):2569-79. PubMed ID: 23406329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine.
    Fonseca Guerra C; van der Wijst T; Bickelhaupt FM
    Chemphyschem; 2006 Sep; 7(9):1971-9. PubMed ID: 16888742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled-cluster and density functional theory studies of the electronic 0-0 transitions of the DNA bases.
    Ovchinnikov VA; Sundholm D
    Phys Chem Chem Phys; 2014 Apr; 16(15):6931-41. PubMed ID: 24595333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):98-103. PubMed ID: 24319979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study.
    Gorb L; Podolyan Y; Dziekonski P; Sokalski WA; Leszczynski J
    J Am Chem Soc; 2004 Aug; 126(32):10119-29. PubMed ID: 15303888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark studies on the building blocks of DNA. 2. Effect of biological environment on the electronic excitation spectrum of nucleobases.
    Szalay PG; Watson T; Perera A; Lotrich V; Fogarasi G; Bartlett RJ
    J Phys Chem A; 2012 Sep; 116(35):8851-60. PubMed ID: 22845884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoreaction channels of the guanine-cytosine base pair explored by long-range corrected TDDFT calculations.
    Yamazaki S; Taketsugu T
    Phys Chem Chem Phys; 2012 Jul; 14(25):8866-77. PubMed ID: 22596076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of a positron to nucleic base molecules and their pairs.
    Koyanagi K; Kita Y; Shigeta Y; Tachikawa M
    Chemphyschem; 2013 Oct; 14(15):3458-62. PubMed ID: 24030868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the aromatic character of the heterocyclic bases of DNA and RNA.
    Cyrański MK; Gilski M; Jaskólski M; Krygowski TM
    J Org Chem; 2003 Oct; 68(22):8607-13. PubMed ID: 14575493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexes of DNA bases and Watson-Crick base pairs interaction with neutral silver Ag
    Srivastava R
    J Biomol Struct Dyn; 2018 Mar; 36(4):1050-1062. PubMed ID: 28325114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A TDDFT study of the optical response of DNA bases, base pairs, and their tautomers in the gas phase.
    Tsolakidis A; Kaxiras E
    J Phys Chem A; 2005 Mar; 109(10):2373-80. PubMed ID: 16839008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Structural and energetic properties of the four configurations of the A.T and G.C DNA base pairs].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):104-10. PubMed ID: 24319980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between hydrogen atoms transfer and stacking interaction in adenine-thymine/guanine-cytosine complexes: a theoretical study.
    Villani G
    J Phys Chem B; 2014 May; 118(20):5439-52. PubMed ID: 24813562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.