These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23473122)

  • 1. Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics.
    González-Tudela A; Porras D
    Phys Rev Lett; 2013 Feb; 110(8):080502. PubMed ID: 23473122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling collective spontaneous emission with plasmonic waveguides.
    Li Y; Argyropoulos C
    Opt Express; 2016 Nov; 24(23):26696-26708. PubMed ID: 27857400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
    De Greve K; McMahon PL; Yu L; Pelc JS; Jones C; Natarajan CM; Kim NY; Abe E; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Fejer MM; Yamamoto Y
    Nat Commun; 2013; 4():2228. PubMed ID: 23887066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient and steady-state entanglement mediated by three-dimensional plasmonic waveguides.
    Gangaraj SA; Nemilentsau A; Hanson GW; Hughes S
    Opt Express; 2015 Aug; 23(17):22330-46. PubMed ID: 26368204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entanglement detection in the vicinity of arbitrary Dicke states.
    Duan LM
    Phys Rev Lett; 2011 Oct; 107(18):180502. PubMed ID: 22107616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides.
    Gonzalez-Tudela A; Martin-Cano D; Moreno E; Martin-Moreno L; Tejedor C; Garcia-Vidal FJ
    Phys Rev Lett; 2011 Jan; 106(2):020501. PubMed ID: 21405211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of polarization entanglement in partially coherent photonic qubits.
    Rao S; Sharma P; Kanseri B
    Opt Lett; 2024 Mar; 49(5):1381-1384. PubMed ID: 38427018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation-assisted spin squeezing of nitrogen-vacancy centers coupled to a rectangular hollow metallic waveguide.
    Song W; Yang W; An J; Feng M
    Opt Express; 2017 Aug; 25(16):19226-19235. PubMed ID: 29041116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems.
    Li Y; Nemilentsau A; Argyropoulos C
    Nanoscale; 2019 Aug; 11(31):14635-14647. PubMed ID: 31343051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent dynamics of a flux qubit coupled to a harmonic oscillator.
    Chiorescu I; Bertet P; Semba K; Nakamura Y; Harmans CJ; Mooij JE
    Nature; 2004 Sep; 431(7005):159-62. PubMed ID: 15356624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scattering-induced entanglement between spin qubits at remote two-state structures.
    Habgood M; Jefferson JH; Briggs GA
    J Phys Condens Matter; 2009 Feb; 21(7):075503. PubMed ID: 21817330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dressed collective qubit states and the Tavis-Cummings model in circuit QED.
    Fink JM; Bianchetti R; Baur M; Göppl M; Steffen L; Filipp S; Leek PJ; Blais A; Wallraff A
    Phys Rev Lett; 2009 Aug; 103(8):083601. PubMed ID: 19792728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent Control of Collective Spontaneous Emission through Self-Interference.
    Qiao L; Gong J
    Phys Rev Lett; 2022 Aug; 129(9):093602. PubMed ID: 36083648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetry Protection of Photonic Entanglement in the Interaction with a Single Nanoaperture.
    Büse A; Juan ML; Tischler N; D'Ambrosio V; Sciarrino F; Marrucci L; Molina-Terriza G
    Phys Rev Lett; 2018 Oct; 121(17):173901. PubMed ID: 30411929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement of remote atomic qubits.
    Matsukevich DN; Chanelière T; Jenkins SD; Lan SY; Kennedy TA; Kuzmich A
    Phys Rev Lett; 2006 Jan; 96(3):030405. PubMed ID: 16486672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits.
    Roch N; Schwartz ME; Motzoi F; Macklin C; Vijay R; Eddins AW; Korotkov AN; Whaley KB; Sarovar M; Siddiqi I
    Phys Rev Lett; 2014 May; 112(17):170501. PubMed ID: 24836225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime.
    Cao C; Wang C; He LY; Zhang R
    Opt Express; 2013 Feb; 21(4):4093-105. PubMed ID: 23481943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.