These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23473201)

  • 21. Hybridization in Three Dimensions: A Novel Route toward Plasmonic Metamolecules.
    Zilio P; Malerba M; Toma A; Zaccaria RP; Jacassi A; De Angelis F
    Nano Lett; 2015 Aug; 15(8):5200-7. PubMed ID: 26214122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regioselective plasmonic coupling in metamolecular analogs of benzene derivatives.
    Fang A; White S; Jain PK; Zamborini FP
    Nano Lett; 2015 Jan; 15(1):542-8. PubMed ID: 25514165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films.
    Brawley ZT; Storm SD; Contreras Mora DA; Pelton M; Sheldon M
    J Chem Phys; 2021 Mar; 154(10):104305. PubMed ID: 33722049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vibrational coupling in plasmonic molecules.
    Yi C; Dongare PD; Su MN; Wang W; Chakraborty D; Wen F; Chang WS; Sader JE; Nordlander P; Halas NJ; Link S
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):11621-11626. PubMed ID: 29078373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fano resonance Rabi splitting of surface plasmons.
    Liu Z; Li J; Liu Z; Li W; Li J; Gu C; Li ZY
    Sci Rep; 2017 Aug; 7(1):8010. PubMed ID: 28808350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polarization-Tailored Fano Interference in Plasmonic Crystals: A Mueller Matrix Model of Anisotropic Fano Resonance.
    Ray SK; Chandel S; Singh AK; Kumar A; Mandal A; Misra S; Mitra P; Ghosh N
    ACS Nano; 2017 Feb; 11(2):1641-1648. PubMed ID: 28071887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection.
    Neubrech F; Pucci A; Cornelius TW; Karim S; GarcĂ­a-Etxarri A; Aizpurua J
    Phys Rev Lett; 2008 Oct; 101(15):157403. PubMed ID: 18999639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic plasmonic Fano resonance at optical frequency.
    Bao Y; Hu Z; Li Z; Zhu X; Fang Z
    Small; 2015 May; 11(18):2177-81. PubMed ID: 25594885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband slow light metamaterial based on a double-continuum Fano resonance.
    Wu C; Khanikaev AB; Shvets G
    Phys Rev Lett; 2011 Mar; 106(10):107403. PubMed ID: 21469834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas.
    Frontiera RR; Gruenke NL; Van Duyne RP
    Nano Lett; 2012 Nov; 12(11):5989-94. PubMed ID: 23094821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering the plasmonic optical properties of cubic silver nanostructures based on Fano resonance.
    Yang Z; Wang M; Song X; Deng J; Yao X
    J Chem Phys; 2013 Oct; 139(16):164713. PubMed ID: 24182070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities.
    Sonnefraud Y; Verellen N; Sobhani H; Vandenbosch GA; Moshchalkov VV; Van Dorpe P; Nordlander P; Maier SA
    ACS Nano; 2010 Mar; 4(3):1664-70. PubMed ID: 20155967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor.
    Ren W; Dai Y; Cai H; Ding H; Pan N; Wang X
    Opt Express; 2013 Apr; 21(8):10251-8. PubMed ID: 23609734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission.
    Zhou ZK; Peng XN; Yang ZJ; Zhang ZS; Li M; Su XR; Zhang Q; Shan X; Wang QQ; Zhang Z
    Nano Lett; 2011 Jan; 11(1):49-55. PubMed ID: 21105724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers.
    Tamma VA; Cui Y; Zhou J; Park W
    Nanoscale; 2013 Feb; 5(4):1592-602. PubMed ID: 23329115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Independently tunable double Fano resonances in asymmetric MIM waveguide structure.
    Qi J; Chen Z; Chen J; Li Y; Qiang W; Xu J; Sun Q
    Opt Express; 2014 Jun; 22(12):14688-95. PubMed ID: 24977564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong coupling between mid-infrared localized plasmons and phonons.
    Wan W; Yang X; Gao J
    Opt Express; 2016 May; 24(11):12367-74. PubMed ID: 27410151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic systems unveiled by Fano resonances.
    Francescato Y; Giannini V; Maier SA
    ACS Nano; 2012 Feb; 6(2):1830-8. PubMed ID: 22280066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate.
    Spinelli P; van Lare C; Verhagen E; Polman A
    Opt Express; 2011 May; 19 Suppl 3():A303-11. PubMed ID: 21643371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.