BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23473548)

  • 1. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis.
    Hagi T; Kobayashi M; Kawamoto S; Shima J; Nomura M
    J Appl Microbiol; 2013 Jun; 114(6):1763-71. PubMed ID: 23473548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.
    Hagi T; Kobayashi M; Nomura M
    FEMS Microbiol Lett; 2014 Jan; 350(2):223-30. PubMed ID: 24325446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.
    Hagi T; Kobayashi M; Nomura M
    FEMS Microbiol Lett; 2015 Jun; 362(12):fnv075. PubMed ID: 25962871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363.
    Wegmann U; O'Connell-Motherway M; Zomer A; Buist G; Shearman C; Canchaya C; Ventura M; Goesmann A; Gasson MJ; Kuipers OP; van Sinderen D; Kok J
    J Bacteriol; 2007 Apr; 189(8):3256-70. PubMed ID: 17307855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid production in Lactobacillus plantarum.
    Garrido-Fernández J; Maldonado-Barragán A; Caballero-Guerrero B; Hornero-Méndez D; Ruiz-Barba JL
    Int J Food Microbiol; 2010 May; 140(1):34-9. PubMed ID: 20303609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.
    Dong X; Tian B; Dai S; Li T; Guo L; Tan Z; Jiao Z; Jin Q; Wang Y; Hua Y
    PLoS One; 2015; 10(11):e0142918. PubMed ID: 26562776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus.
    Wieland B; Feil C; Gloria-Maercker E; Thumm G; Lechner M; Bravo JM; Poralla K; Götz F
    J Bacteriol; 1994 Dec; 176(24):7719-26. PubMed ID: 8002598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of promoters from Lactococcus lactis ssp. cremoris LM0230.
    Jeong DW; Choi YC; Lee JM; Kim JH; Lee JH; Kim KH; Lee HJ
    Food Microbiol; 2006 Feb; 23(1):82-9. PubMed ID: 16942990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.
    Weidmann S; Maitre M; Laurent J; Coucheney F; Rieu A; Guzzo J
    Int J Food Microbiol; 2017 Apr; 247():18-23. PubMed ID: 27318622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.
    Amiri-Jami M; Lapointe G; Griffiths MW
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3071-80. PubMed ID: 24389665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of lycopene biosynthesis genes fused in line with Shine-Dalgarno sequences improves the stress-tolerance of Lactococcus lactis.
    Dong X; Wang Y; Yang F; Zhao S; Tian B; Li T
    Biotechnol Lett; 2017 Jan; 39(1):65-70. PubMed ID: 27677495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and genetic maps of the chromosome of the Lactococcus lactis subsp. lactis strain IL1403 and Lactococcus lactis subsp. cremoris strain MG1363.
    Le Bourgeois P; Lautier M; Van den Berghe L; Serin G; Nedjari H; Ritzenthaler P
    Dev Biol Stand; 1995; 85():597-603. PubMed ID: 8586238
    [No Abstract]   [Full Text] [Related]  

  • 15. Genetic modification in Bacillus subtilis for production of C30 carotenoids.
    Maeda I
    Methods Mol Biol; 2012; 892():197-205. PubMed ID: 22623304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cloning and expression of nisZ gene in Lactococcus lactis].
    Chen XZ; Hu HJ; Yang W; Huan LD
    Yi Chuan Xue Bao; 2001; 28(3):285-90. PubMed ID: 11281003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies.
    Linares DM; Kok J; Poolman B
    J Bacteriol; 2010 Nov; 192(21):5806-12. PubMed ID: 20639323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of
    Kim M; Seo DH; Park YS; Cha IT; Seo MJ
    J Microbiol Biotechnol; 2019 Dec; 29(12):1925-1930. PubMed ID: 31635447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactococcus lactis and stress.
    Rallu F; Gruss A; Maguin E
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):243-51. PubMed ID: 8879409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.