BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23473548)

  • 21. The Lactococcus lactis sex-factor aggregation gene cluA.
    Godon JJ; Jury K; Shearman CA; Gasson MJ
    Mol Microbiol; 1994 May; 12(4):655-63. PubMed ID: 7934889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular characterization of plasmids pS7a and pS7b from Lactococcus lactis subsp. lactis bv. diacetylactis S50 as a base for the construction of mobilizable cloning vectors.
    Strahinic I; Kojic M; Tolinacki M; Fira D; Topisirovic L
    J Appl Microbiol; 2009 Jan; 106(1):78-88. PubMed ID: 19040703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whole-transcriptome analysis of oxidative stress response genes in carotenoid-producing Enterococcus gilvus.
    Hagi T; Kobayashi M; Nomura M
    Biosci Biotechnol Biochem; 2018 Jun; 82(6):1053-1057. PubMed ID: 29161967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of a cystathionine beta/gamma-lyase from Lactococcus lactis ssp. cremoris MG1363.
    Dobric N; Limsowtin GK; Hillier AJ; Dudman NP; Davidson BE
    FEMS Microbiol Lett; 2000 Jan; 182(2):249-54. PubMed ID: 10620674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness.
    Dijkstra AR; Alkema W; Starrenburg MJ; Hugenholtz J; van Hijum SA; Bron PA
    Microb Cell Fact; 2014 Nov; 13():148. PubMed ID: 25366036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses.
    Kim WS; Ren J; Dunn NW
    FEMS Microbiol Lett; 1999 Feb; 171(1):57-65. PubMed ID: 9987842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carotenoid production in Bacillus subtilis achieved by metabolic engineering.
    Yoshida K; Ueda S; Maeda I
    Biotechnol Lett; 2009 Nov; 31(11):1789-93. PubMed ID: 19618272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Expression in Lactococcus lactis of catalytically active phenylalanine ammonia-lyase from parsley].
    Xiang H; Liu J; Hu W; Zhu J; Zhu Z
    Wei Sheng Wu Xue Bao; 1999 Jun; 39(3):196-204. PubMed ID: 12555534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 4,4'-Diaponeurosporene Production as C
    Kim M; Jung DH; Hwang CY; Siziya IN; Park YS; Seo MJ
    Appl Biochem Biotechnol; 2023 Jan; 195(1):135-151. PubMed ID: 36066805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding properties of Streptococcus gordonii SspA and SspB (antigen I/II family) polypeptides expressed on the cell surface of Lactococcus lactis MG1363.
    Holmes AR; Gilbert C; Wells JM; Jenkinson HF
    Infect Immun; 1998 Oct; 66(10):4633-9. PubMed ID: 9746559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461.
    Dabour N; LaPointe G
    Appl Environ Microbiol; 2005 Nov; 71(11):7414-25. PubMed ID: 16269783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of the CesR-regulated genes llmg0169 and llmg2164-2163 to Lactococcus lactis fitness.
    Roces C; Campelo AB; Veiga P; Pinto JP; Rodríguez A; Martínez B
    Int J Food Microbiol; 2009 Aug; 133(3):279-85. PubMed ID: 19559493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis.
    Visweswaran GR; Kurek D; Szeliga M; Pastrana FR; Kuipers OP; Kok J; Buist G
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1099-1110. PubMed ID: 27660179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterologous expression of C
    Gou Z; Song X; Wang G; Xia Y; Ai L; Xiong Z
    J Sci Food Agric; 2023 Jan; 103(2):506-513. PubMed ID: 36468615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular and Extracellular Expression of Bacillus thuringiensis Crystal Protein Cry5B in Lactococcus lactis for Use as an Anthelminthic.
    Durmaz E; Hu Y; Aroian RV; Klaenhammer TR
    Appl Environ Microbiol; 2016 Feb; 82(4):1286-94. PubMed ID: 26682852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two methods for the genetic differentiation of Lactococcus lactis ssp. lactis and cremoris based on differences in the 16S rRNA gene sequence.
    Ward LJ; Brown JC; Davey GP
    FEMS Microbiol Lett; 1998 Sep; 166(1):15-20. PubMed ID: 9741080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals.
    Rallu F; Gruss A; Ehrlich SD; Maguin E
    Mol Microbiol; 2000 Feb; 35(3):517-28. PubMed ID: 10672175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional analysis of the cyclopropane fatty acid synthase gene of Lactococcus lactis MG1363 at low pH.
    Budin-Verneuil A; Maguin E; Auffray Y; Ehrlich SD; Pichereau V
    FEMS Microbiol Lett; 2005 Sep; 250(2):189-94. PubMed ID: 16098686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel exopolysaccharides produced by Lactococcus lactis subsp. lactis, and the diversity of epsE genes in the exopolysaccharide biosynthesis gene clusters.
    Suzuki C; Kobayashi M; Kimoto-Nira H
    Biosci Biotechnol Biochem; 2013; 77(10):2013-8. PubMed ID: 24096663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis.
    Borrero J; Jiménez JJ; Gútiez L; Herranz C; Cintas LM; Hernández PE
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):131-43. PubMed ID: 20842358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.