These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 23473879)

  • 41. Molecular Optimization of Rhodopsin-Based Tools for Neuroscience Applications.
    Fenno LE; Levy R; Yizhar O
    Methods Mol Biol; 2022; 2501():289-310. PubMed ID: 35857234
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research.
    Christenson Wick Z; Krook-Magnuson E
    Front Cell Neurosci; 2018; 12():151. PubMed ID: 29962936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Establishing a fiber-optic-based optical neural interface.
    Adamantidis AR; Zhang F; de Lecea L; Deisseroth K
    Cold Spring Harb Protoc; 2014 Aug; 2014(8):839-44. PubMed ID: 25086020
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing.
    Madisen L; Mao T; Koch H; Zhuo JM; Berenyi A; Fujisawa S; Hsu YW; Garcia AJ; Gu X; Zanella S; Kidney J; Gu H; Mao Y; Hooks BM; Boyden ES; Buzsáki G; Ramirez JM; Jones AR; Svoboda K; Han X; Turner EE; Zeng H
    Nat Neurosci; 2012 Mar; 15(5):793-802. PubMed ID: 22446880
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Principles and applications of optogenetics in neuroscience].
    Dugué GP; Tricoire L
    Med Sci (Paris); 2015 Mar; 31(3):291-303. PubMed ID: 25855283
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integration of optogenetics with complementary methodologies in systems neuroscience.
    Kim CK; Adhikari A; Deisseroth K
    Nat Rev Neurosci; 2017 Mar; 18(4):222-235. PubMed ID: 28303019
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optogenetics enlightens neuroscience drug discovery.
    Song C; Knöpfel T
    Nat Rev Drug Discov; 2016 Feb; 15(2):97-109. PubMed ID: 26612666
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light-induced silencing of neural activity in Rosa26 knock-in mice conditionally expressing the microbial halorhodopsin eNpHR2.0.
    Imayoshi I; Tabuchi S; Hirano K; Sakamoto M; Kitano S; Miyachi H; Yamanaka A; Kageyama R
    Neurosci Res; 2013 Jan; 75(1):53-8. PubMed ID: 22465523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advances and prospects of rhodopsin-based optogenetics in plant research.
    Zhou Y; Ding M; Nagel G; Konrad KR; Gao S
    Plant Physiol; 2021 Oct; 187(2):572-589. PubMed ID: 35237820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.
    Babl SS; Rummell BP; Sigurdsson T
    Cell Rep; 2019 Oct; 29(5):1381-1395.e4. PubMed ID: 31665647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations.
    Ji ZG; Wang H
    Life Sci; 2016 Apr; 150():95-102. PubMed ID: 26903290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.
    Lee J; Ozden I; Song YK; Nurmikko AV
    Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chronic optogenetic activation augments aβ pathology in a mouse model of Alzheimer disease.
    Yamamoto K; Tanei ZI; Hashimoto T; Wakabayashi T; Okuno H; Naka Y; Yizhar O; Fenno LE; Fukayama M; Bito H; Cirrito JR; Holtzman DM; Deisseroth K; Iwatsubo T
    Cell Rep; 2015 May; 11(6):859-865. PubMed ID: 25937280
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats.
    Johnson AC; Latorre R; Ligon CO; Greenwood-Van Meerveld B
    Am J Physiol Gastrointest Liver Physiol; 2018 Mar; 314(3):G448-G457. PubMed ID: 29351398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optogenetic Manipulation of Selective Neural Activity in Free-Moving Drosophila Adults.
    Hsiao PY; Wu MC; Lin YY; Fu CC; Chiang AS
    Methods Mol Biol; 2016; 1408():377-87. PubMed ID: 26965137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial Halorhodopsins: Light-Driven Chloride Pumps.
    Engelhard C; Chizhov I; Siebert F; Engelhard M
    Chem Rev; 2018 Nov; 118(21):10629-10645. PubMed ID: 29882660
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.
    Husson SJ; Gottschalk A; Leifer AM
    Biol Cell; 2013 Jun; 105(6):235-50. PubMed ID: 23458457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.