BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 234746)

  • 1. Mutants of Escherichia coli K12 unable to grow on non-fermentable carbon substrates.
    Daniel J; Roisin MP; Burstein C; Kepes A
    Biochim Biophys Acta; 1975 Feb; 376(2):195-209. PubMed ID: 234746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of several energy-coupling reactions in characterizing mutants of Escherichia coli K12 defective in oxidative phosphorylation.
    Schairer HU; Friedl P; Schmid BI; Vogel G
    Eur J Biochem; 1976 Jul; 66(2):257-68. PubMed ID: 133025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transduction in Escherichia coli. Genetic alteration of a membrane polypeptide of the (Ca2+,Mg2+)-ATPase.
    Simoni RD; Shandell A
    J Biol Chem; 1975 Dec; 250(24):9421-7. PubMed ID: 127796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli.
    Kobayashi H; Kin E; Anraku Y
    J Biochem; 1974 Aug; 76(2):251-61. PubMed ID: 4154322
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine 5'-triphosphate-linked transhydrogenase in cytoplasmic membranes of colicin-treated and untreated Escherichia coli.
    Sabet SF
    J Bacteriol; 1977 Mar; 129(3):1397-406. PubMed ID: 139401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and properties of reconstitutively active and inactive adenosinetriphosphatase from Escherichia coli.
    Futai M; Sternweis PC; Heppel LA
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2725-9. PubMed ID: 4153028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative phosphorylation in Escherichia coli K12. An uncoupled mutant with altered membrane structure.
    Cox GB; Gibson F; McCann L
    Biochem J; 1974 Feb; 138(2):211-5. PubMed ID: 4150811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of the energy-linked transhydrogenase activity in membranes from a mutant strain of Escherichia coli K12 lacking magnesium ion- or calcium ion-stimulated adenosine triphosphatase.
    Cox GB; Gibson F; McCann LM; Butlin JD; Crane FL
    Biochem J; 1973 Apr; 132(4):689-95. PubMed ID: 4269101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane reconstitution in chl-r mutants of Escherichia coli K 12. VII. Purification of the soluble ATPase of supernatant extracts and kinetics of incorporation into reconstituted particles.
    Giordano G; Riviere C; Azoulay E
    Biochim Biophys Acta; 1975 May; 389(2):203-18. PubMed ID: 124590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different effects of inhibitors on two mutants of Escherichia coli K12 affected in the Fo portion of the adenosine triphosphatase complex.
    Cox GB; Crane FL; Downie JA; Radik J
    Biochim Biophys Acta; 1977 Oct; 462(1):113-20. PubMed ID: 143961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energization of phenylalanine transport and energy-dependent transhydrogenase by ATP in cytochrome-deficient Escherichia coli K12.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1974 Apr; 57(4):1200-6. PubMed ID: 4151532
    [No Abstract]   [Full Text] [Related]  

  • 12. The energy-linked transhydrogenase reaction in respiratory mutants of Escherichia coli K12.
    Cox GB; Newton NA; Butlin JD; Gibson F
    Biochem J; 1971 Nov; 125(2):489-93. PubMed ID: 4335691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation between mutants of Escherichia coli K defective in oxidative phosphorylation.
    Kanner BI; Nelson N; Gutnick DL
    Biochim Biophys Acta; 1975 Sep; 396(3):347-59. PubMed ID: 126079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Transhydrogenase as an additional site of energy accumulation in the E. coli respiratory chain].
    Chetkauskaite AV; Grinius LL
    Biokhimiia; 1979 Jun; 44(6):1101-9. PubMed ID: 37931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-linked and energy-independent transhydrogenase activities in Escherichia coli vesicles.
    Houghton RL; Fisher RJ; Sanadi DR
    Biochim Biophys Acta; 1975 Jul; 396(1):17-23. PubMed ID: 167848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial purification of active delta and epsilon subunits of the membrane ATPase from escherichia coli.
    Smith JB; Sternweis PC; Heppel LA
    J Supramol Struct; 1975; 3(3):248-55. PubMed ID: 127087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and properties of Escherichia coli ATPase mutants with altered divalent metal specificity for ATP hydrolysis.
    Thipayathasana P
    Biochim Biophys Acta; 1975 Oct; 408(1):47-57. PubMed ID: 240443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colicins and bacterial membranes: structures and functions. II. Studies on reconstituted homologous and hybrid membranes prepared from cytoplasmic membranes of untreated and colicin K-treated bacteria.
    Farid-Sabet S
    J Biol Chem; 1978 Feb; 253(3):990-5. PubMed ID: 146040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of coupling factor activity to Escherichia coli ATPase missing the delta subunit.
    Smith JB; Sternweis PC
    Biochem Biophys Res Commun; 1975 Feb; 62(3):764-71. PubMed ID: 235262
    [No Abstract]   [Full Text] [Related]  

  • 20. The membrane ATPase of Escherichia coli. I. Release into solution, allotopic properties and reconstitution of membrane-bound ATPase.
    Roisin MP; Kepes A
    Biochim Biophys Acta; 1973 May; 305(2):249-59. PubMed ID: 4354872
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.