These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 234746)

  • 21. Crosslinking studies on the Ca2+, Mg2+-activated ATPase of Escherichia coli.
    Bragg PD
    J Supramol Struct; 1975; 3(3):297-303. PubMed ID: 127090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Method for isolation of Escherichia coli mutants with defects in the proton-translocating sector of the membrane adenosine triphosphatase complex.
    Fillingame RH; Knoebel K; Wopat AE
    J Bacteriol; 1978 Nov; 136(2):570-81. PubMed ID: 152309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy conservation in membranes of mutants of Escherichia coli defective in oxidative phosphorylation.
    Nieuwenhuis FJ; Kanner BI; Gutnick DL; Postma PW; van Dam K
    Biochim Biophys Acta; 1973 Oct; 325(1):62-71. PubMed ID: 4149157
    [No Abstract]   [Full Text] [Related]  

  • 24. Energization of energy-dependent transhydrogenase of Escherichia coli at a second site of energy conservation.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1974 Aug; 163(2):614-6. PubMed ID: 4153348
    [No Abstract]   [Full Text] [Related]  

  • 25. Reconstitution of energy-dependent transhydrogenase in ATPase-negative mutants of Escherichia coli.
    Bragg PD; Hou C
    Biochem Biophys Res Commun; 1973 Feb; 50(3):729-36. PubMed ID: 4265977
    [No Abstract]   [Full Text] [Related]  

  • 26. Reconstitution of an energy-linked reaction (reduced pyridine nucleotide transhydrogenation) in fractionated Escherichia coli membranes with purified ATPase.
    Bragg PD
    Methods Enzymol; 1979; 55():787-800. PubMed ID: 156859
    [No Abstract]   [Full Text] [Related]  

  • 27. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12.
    Poole RK; Haddock BA
    Biochem J; 1974 Oct; 144(1):77-85. PubMed ID: 4156832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The reconstitution of oxidase activity in membranes derived from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli.
    Haddock BA
    Biochem J; 1973 Dec; 136(4):877-84. PubMed ID: 4150652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The membrane ATPase of Escherichia coli. I. Ion dependence and ATP-ADP exchange reaction.
    Roisin MP; Kepes A
    Biochim Biophys Acta; 1972 Sep; 275(3):333-46. PubMed ID: 4262689
    [No Abstract]   [Full Text] [Related]  

  • 30. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.
    Okkeri J; Laakkonen L; Haltia T
    Biochem J; 2004 Jan; 377(Pt 1):95-105. PubMed ID: 14510639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties of Escherichia coli mutants with alterations in Mg2+-adenosine triphosphatase.
    Adler LW; Rosen BP
    J Bacteriol; 1976 Oct; 128(1):248-56. PubMed ID: 135756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salmonella typhimurium HfrA, a mutant in which adenosine triphosphate can drive amino acid transport but not energy-dependent nicotinamide nucleotide transhydrogenation.
    Kay WW; Bragg PD
    Biochem J; 1975 Jul; 150(1):21-9. PubMed ID: 128357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic properties of Mg, Ca ATPase from various Escherichia coli mutants.
    Ahlers J; Günther T; Schrandt I
    Z Naturforsch C Biosci; 1976; 31(3-4):201-2. PubMed ID: 134563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of the two ATP-binding sites in ClpB, a heat shock protein with protein-activated ATPase activity in Escherichia coli.
    Kim KI; Woo KM; Seong IS; Lee ZW; Baek SH; Chung CH
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):671-6. PubMed ID: 9677327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations in either nucleotide-binding site of P-glycoprotein (Mdr3) prevent vanadate trapping of nucleotide at both sites.
    Urbatsch IL; Beaudet L; Carrier I; Gros P
    Biochemistry; 1998 Mar; 37(13):4592-602. PubMed ID: 9521779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane reconstitution in chl-r mutants of Escherichia coli K 12. V. ATPase incorporation into particles formed by complementation.
    Giordana G; Riviere C; Azoulay E
    Biochim Biophys Acta; 1973 May; 307(3):513-24. PubMed ID: 4352435
    [No Abstract]   [Full Text] [Related]  

  • 37. Energy transduction in Escherichia coli. The effect of chaotropic agents on energy coupling in everted membrane vesicles from aerobic and anaerobic cultures.
    Hasan SM; Rosen BP
    Biochim Biophys Acta; 1977 Feb; 459(2):225-40. PubMed ID: 138439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations in motif II of Escherichia coli DNA helicase II render the enzyme nonfunctional in both mismatch repair and excision repair with differential effects on the unwinding reaction.
    Brosh RM; Matson SW
    J Bacteriol; 1995 Oct; 177(19):5612-21. PubMed ID: 7559350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstitution of oxidative phosphorylation and the adenosine triphosphate-dependent transhydrogenase activity by a combination of membrane fractions from unCA- and uncB- mutant strains of Escherichia coli K12.
    Cox GB; Gibson F; McCann L
    Biochem J; 1973 Aug; 134(4):1015-21. PubMed ID: 4271644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escherichia coli mutants defective in the uncH gene.
    Humbert R; Brusilow WS; Gunsalus RP; Klionsky DJ; Simoni RD
    J Bacteriol; 1983 Jan; 153(1):416-22. PubMed ID: 6294057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.