These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23474728)

  • 1. Parallel real-time PCR on a chip for genetic tug-of-war (gTOW) method.
    Naito T; Yatsuhashi A; Kaji N; Ando T; Sato K; Moriya H; Kitano H; Yasui T; Tokeshi M; Baba Y
    Anal Sci; 2013; 29(3):367-71. PubMed ID: 23474728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness analysis of cellular systems using the genetic tug-of-war method.
    Moriya H; Makanae K; Watanabe K; Chino A; Shimizu-Yoshida Y
    Mol Biosyst; 2012 Oct; 8(10):2513-22. PubMed ID: 22722869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae.
    Moriya H; Shimizu-Yoshida Y; Kitano H
    PLoS Genet; 2006 Jul; 2(7):e111. PubMed ID: 16839182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.
    Wan W; Yeow JT
    Biomed Microdevices; 2012 Apr; 14(2):337-46. PubMed ID: 22094824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of SARS-coronavirus by a microfluidic chip system.
    Zhou X; Liu D; Zhong R; Dai Z; Wu D; Wang H; Du Y; Xia Z; Zhang L; Mei X; Lin B
    Electrophoresis; 2004 Sep; 25(17):3032-9. PubMed ID: 15349945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms.
    Nayak M; Singh D; Singh H; Kant R; Gupta A; Pandey SS; Mandal S; Ramanathan G; Bhattacharya S
    Sci Rep; 2013 Nov; 3():3266. PubMed ID: 24253282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EWOD silicon biosensor for multiple nucleic acids analysis.
    Petralia S; Motta D; Conoci S
    Biotechnol Bioeng; 2019 Aug; 116(8):2087-2094. PubMed ID: 30963547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel fluorescence detection technique for non-contact temperature sensing in microchip PCR.
    Mondal S; Venkataraman V
    J Biochem Biophys Methods; 2007 Aug; 70(5):773-7. PubMed ID: 17570532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A disposable, self-contained PCR chip.
    Kim J; Byun D; Mauk MG; Bau HH
    Lab Chip; 2009 Feb; 9(4):606-12. PubMed ID: 19190797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-cost, real-time, continuous flow PCR system for pathogen detection.
    Fernández-Carballo BL; McGuiness I; McBeth C; Kalashnikov M; Borrós S; Sharon A; Sauer-Budge AF
    Biomed Microdevices; 2016 Apr; 18(2):34. PubMed ID: 26995085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lab-on-capillary: a rapid, simple and quantitative genetic analysis platform integrating nucleic acid extraction, amplification and detection.
    Fu Y; Zhou X; Xing D
    Lab Chip; 2017 Dec; 17(24):4334-4341. PubMed ID: 29139529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Q3: A Compact Device for Quick, High Precision qPCR.
    Cereda M; Cocci A; Cucchi D; Raia L; Pirola D; Bruno L; Ferrari P; Pavanati V; Calisti G; Ferrara F; Bramanti AP; Bianchessi MA
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method.
    Makanae K; Kintaka R; Makino T; Kitano H; Moriya H
    Genome Res; 2013 Feb; 23(2):300-11. PubMed ID: 23275495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip.
    Sposito A; Hoang V; DeVoe DL
    Lab Chip; 2016 Sep; 16(18):3524-31. PubMed ID: 27460504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Single-Cell Real-Time Quantitative PCR Analysis.
    Haim-Vilmovsky L
    Methods Mol Biol; 2019; 1979():177-183. PubMed ID: 31028638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lab on a chip technologies for algae detection: a review.
    Schaap A; Rohrlack T; Bellouard Y
    J Biophotonics; 2012 Aug; 5(8-9):661-72. PubMed ID: 22693123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A miniature quantitative PCR device for directly monitoring a sample processing on a microfluidic rapid DNA system.
    Hurth C; Yang J; Barrett M; Brooks C; Nordquist A; Smith S; Zenhausern F
    Biomed Microdevices; 2014 Dec; 16(6):905-14. PubMed ID: 25106501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-pressure liquid chromatography in lab-on-a-chip devices.
    Ehlert S; Tallarek U
    Anal Bioanal Chem; 2007 Jun; 388(3):517-20. PubMed ID: 17483934
    [No Abstract]   [Full Text] [Related]  

  • 19. High-throughput on-chip leukemia diagnosis.
    Park S; Moon HS; Lee DS; Kim HC; Chun H
    Int J Lab Hematol; 2013 Oct; 35(5):480-90. PubMed ID: 23414350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the lower protein limit in the budding yeast Saccharomyces cerevisiae using TIPI-gTOW.
    Sasabe M; Shintani S; Kintaka R; Kaizu K; Makanae K; Moriya H
    BMC Syst Biol; 2014 Jan; 8():2. PubMed ID: 24393197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.