These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23474764)

  • 41. Protein kinase C in cancer: The top five unanswered questions.
    Cooke M; Magimaidas A; Casado-Medrano V; Kazanietz MG
    Mol Carcinog; 2017 Jun; 56(6):1531-1542. PubMed ID: 28112438
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep Coverage of Global Protein Expression and Phosphorylation in Breast Tumor Cell Lines Using TMT 10-plex Isobaric Labeling.
    Huang FK; Zhang G; Lawlor K; Nazarian A; Philip J; Tempst P; Dephoure N; Neubert TA
    J Proteome Res; 2017 Mar; 16(3):1121-1132. PubMed ID: 28102081
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifunctional roles of PKCδ: Opportunities for targeted therapy in human disease.
    Reyland ME; Jones DN
    Pharmacol Ther; 2016 Sep; 165():1-13. PubMed ID: 27179744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross Talk Mechanism among EMT, ROS, and Histone Acetylation in Phorbol Ester-Treated Human Breast Cancer MCF-7 Cells.
    Kamiya T; Goto A; Kurokawa E; Hara H; Adachi T
    Oxid Med Cell Longev; 2016; 2016():1284372. PubMed ID: 27127545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PKCδ regulates integrin αVβ3 expression and transformed growth of K-ras dependent lung cancer cells.
    Symonds JM; Ohm AM; Tan AC; Reyland ME
    Oncotarget; 2016 Apr; 7(14):17905-19. PubMed ID: 26918447
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DAG/PKCδ and IP3/Ca²⁺/CaMK IIβ Operate in Parallel to Each Other in PLCγ1-Driven Cell Proliferation and Migration of Human Gastric Adenocarcinoma Cells, through Akt/mTOR/S6 Pathway.
    Dai L; Zhuang L; Zhang B; Wang F; Chen X; Xia C; Zhang B
    Int J Mol Sci; 2015 Dec; 16(12):28510-22. PubMed ID: 26633375
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells.
    Qu Y; Han B; Yu Y; Yao W; Bose S; Karlan BY; Giuliano AE; Cui X
    PLoS One; 2015; 10(7):e0131285. PubMed ID: 26147507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of Lapatinib-Induced Kinome Reprogramming in ERBB2-Positive Breast Cancer by Targeting BET Family Bromodomains.
    Stuhlmiller TJ; Miller SM; Zawistowski JS; Nakamura K; Beltran AS; Duncan JS; Angus SP; Collins KA; Granger DA; Reuther RA; Graves LM; Gomez SM; Kuan PF; Parker JS; Chen X; Sciaky N; Carey LA; Earp HS; Jin J; Johnson GL
    Cell Rep; 2015 Apr; 11(3):390-404. PubMed ID: 25865888
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A kinase inhibitor screen reveals protein kinase C-dependent endocytic recycling of ErbB2 in breast cancer cells.
    Bailey TA; Luan H; Tom E; Bielecki TA; Mohapatra B; Ahmad G; George M; Kelly DL; Natarajan A; Raja SM; Band V; Band H
    J Biol Chem; 2014 Oct; 289(44):30443-30458. PubMed ID: 25225290
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibiting tyrosine phosphorylation of protein kinase Cδ (PKCδ) protects the salivary gland from radiation damage.
    Wie SM; Adwan TS; DeGregori J; Anderson SM; Reyland ME
    J Biol Chem; 2014 Apr; 289(15):10900-10908. PubMed ID: 24569990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein kinase C-δ inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo.
    Chen Z; Forman LW; Williams RM; Faller DV
    BMC Cancer; 2014 Feb; 14():90. PubMed ID: 24528676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein kinase C and cancer: what we know and what we do not.
    Garg R; Benedetti LG; Abera MB; Wang H; Abba M; Kazanietz MG
    Oncogene; 2014 Nov; 33(45):5225-37. PubMed ID: 24336328
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein tyrosine kinase 6 promotes ERBB2-induced mammary gland tumorigenesis in the mouse.
    Peng M; Ball-Kell SM; Tyner AL
    Cell Death Dis; 2015 Aug; 6(8):e1848. PubMed ID: 26247733
    [TBL] [Abstract][Full Text] [Related]  

  • 54. p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis.
    Cabodi S; Tinnirello A; Di Stefano P; Bisarò B; Ambrosino E; Castellano I; Sapino A; Arisio R; Cavallo F; Forni G; Glukhova M; Silengo L; Altruda F; Turco E; Tarone G; Defilippi P
    Cancer Res; 2006 May; 66(9):4672-80. PubMed ID: 16651418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increased erbB3 promotes erbB2/neu-driven mammary tumor proliferation and co-targeting of erbB2/erbB3 receptors exhibits potent inhibitory effects on breast cancer cells.
    Lyu H; Huang J; Edgerton SM; Thor AD; He Z; Liu B
    Int J Clin Exp Pathol; 2015; 8(6):6143-56. PubMed ID: 26261492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The tumor suppressor function of STAT1 in breast cancer.
    Koromilas AE; Sexl V
    JAKSTAT; 2013 Apr; 2(2):e23353. PubMed ID: 24058806
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein kinase Cδ is required for ErbB2-driven mammary gland tumorigenesis and negatively correlates with prognosis in human breast cancer.
    Allen-Petersen BL; Carter CJ; Ohm AM; Reyland ME
    Oncogene; 2014 Mar; 33(10):1306-15. PubMed ID: 23474764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The glucose transporter GLUT1 is required for ErbB2-induced mammary tumorigenesis.
    Wellberg EA; Johnson S; Finlay-Schultz J; Lewis AS; Terrell KL; Sartorius CA; Abel ED; Muller WJ; Anderson SM
    Breast Cancer Res; 2016 Dec; 18(1):131. PubMed ID: 27998284
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.