These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 23474807)
21. Attachment of bacteriophages MS2 and ΦX174 onto kaolinite and montmorillonite: extended-DLVO interactions. Chrysikopoulos CV; Syngouna VI Colloids Surf B Biointerfaces; 2012 Apr; 92():74-83. PubMed ID: 22153836 [TBL] [Abstract][Full Text] [Related]
22. The role of surface functionalization of colloidal alumina particles on their controlled interactions with viruses. Meder F; Wehling J; Fink A; Piel B; Li K; Frank K; Rosenauer A; Treccani L; Koeppen S; Dotzauer A; Rezwan K Biomaterials; 2013 Jun; 34(17):4203-13. PubMed ID: 23498895 [TBL] [Abstract][Full Text] [Related]
23. Comparison of behaviors of two surrogates for pathogenic waterborne viruses, bacteriophages Qbeta and MS2, during the aluminum coagulation process. Shirasaki N; Matsushita T; Matsui Y; Urasaki T; Ohno K Water Res; 2009 Feb; 43(3):605-12. PubMed ID: 19042000 [TBL] [Abstract][Full Text] [Related]
24. Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Kim JY; Lee C; Love DC; Sedlak DL; Yoon J; Nelson KL Environ Sci Technol; 2011 Aug; 45(16):6978-84. PubMed ID: 21726084 [TBL] [Abstract][Full Text] [Related]
25. Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM. Rochette CN; Crassous JJ; Drechsler M; Gaboriaud F; Eloy M; de Gaudemaris B; Duval JF Langmuir; 2013 Nov; 29(47):14655-65. PubMed ID: 24152085 [TBL] [Abstract][Full Text] [Related]
26. Removal of MS2 bacteriophage using membrane technologies. Hu JY; Ong SL; Song LF; Feng YY; Liu WT; Tan TW; Lee LY; Ng WJ Water Sci Technol; 2003; 47(12):163-8. PubMed ID: 12926684 [TBL] [Abstract][Full Text] [Related]
27. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Boudaud N; Machinal C; David F; Fréval-Le Bourdonnec A; Jossent J; Bakanga F; Arnal C; Jaffrezic MP; Oberti S; Gantzer C Water Res; 2012 May; 46(8):2651-64. PubMed ID: 22421032 [TBL] [Abstract][Full Text] [Related]
28. Deposition kinetics of bacteriophage MS2 on a silica surface coated with natural organic matter in a radial stagnation point flow cell. Yuan B; Pham M; Nguyen TH Environ Sci Technol; 2008 Oct; 42(20):7628-33. PubMed ID: 18983085 [TBL] [Abstract][Full Text] [Related]
29. Investigation of the Electrokinetic Properties of HIV-Based Virus-Like Particles. Wolf T; Grau C; Rosengarten JF; Stitz J; Wilkens J; Barbe S Langmuir; 2024 Mar; 40(9):4762-4771. PubMed ID: 38385169 [TBL] [Abstract][Full Text] [Related]
30. Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. Pan Y; Zhang Y; Jia T; Zhang K; Li J; Wang L FEBS J; 2012 Apr; 279(7):1198-208. PubMed ID: 22309233 [TBL] [Abstract][Full Text] [Related]
31. Accumulation of MS2, GA, and Qβ phages on high density polyethylene (HDPE) and drinking water biofilms under flow/non-flow conditions. Pelleïeux S; Bertrand I; Skali-Lami S; Mathieu L; Francius G; Gantzer C Water Res; 2012 Dec; 46(19):6574-84. PubMed ID: 22955017 [TBL] [Abstract][Full Text] [Related]
32. A new RNA vaccine platform based on MS2 virus-like particles produced in Saccharomyces cerevisiae. Sun S; Li W; Sun Y; Pan Y; Li J Biochem Biophys Res Commun; 2011 Apr; 407(1):124-8. PubMed ID: 21362402 [TBL] [Abstract][Full Text] [Related]
34. Colloidal Transformations in MS2 Virus Particles: Driven by pH, Influenced by Natural Organic Matter. Watts S; Julian TR; Maniura-Weber K; Graule T; Salentinig S ACS Nano; 2020 Feb; 14(2):1879-1887. PubMed ID: 32027487 [TBL] [Abstract][Full Text] [Related]
35. Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Brady-Estévez AS; Nguyen TH; Gutierrez L; Elimelech M Water Res; 2010 Jul; 44(13):3773-80. PubMed ID: 20569966 [TBL] [Abstract][Full Text] [Related]
36. MS2 and Qβ bacteriophages reveal the contribution of surface hydrophobicity on the mobility of non-enveloped icosahedral viruses in SDS-based capillary zone electrophoresis. Sautrey G; Brié A; Gantzer C; Walcarius A Electrophoresis; 2018 Jan; 39(2):377-385. PubMed ID: 29072777 [TBL] [Abstract][Full Text] [Related]
37. Hofmeister effects on the colloidal stability of an IgG-coated polystyrene latex. López-León T; Jódar-Reyes AB; Ortega-Vinuesa JL; Bastos-González D J Colloid Interface Sci; 2005 Apr; 284(1):139-48. PubMed ID: 15752795 [TBL] [Abstract][Full Text] [Related]
38. Inactivation of MS2 coliphage by Fenton's reagent. Kim JY; Lee C; Sedlak DL; Yoon J; Nelson KL Water Res; 2010 Apr; 44(8):2647-53. PubMed ID: 20172583 [TBL] [Abstract][Full Text] [Related]
39. A new biosynthetic tracer for the inline measurement of virus retention in membrane processes: part II. Biochemical and physicochemical characterizations of the new tracer. Soussan L; Guigui C; Alfenore S; Mathe S; Cabassud C Anal Chim Acta; 2011 Apr; 690(2):199-208. PubMed ID: 21435476 [TBL] [Abstract][Full Text] [Related]